13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography–mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.

          The pyruvate kinase isoforms PKM1 and PKM2 are alternatively spliced products of the PKM2 gene. PKM2, but not PKM1, alters glucose metabolism in cancer cells and contributes to tumorigenesis by mechanisms that are not explained by its known biochemical activity. We show that PKM2 gene transcription is activated by hypoxia-inducible factor 1 (HIF-1). PKM2 interacts directly with the HIF-1α subunit and promotes transactivation of HIF-1 target genes by enhancing HIF-1 binding and p300 recruitment to hypoxia response elements, whereas PKM1 fails to regulate HIF-1 activity. Interaction of PKM2 with prolyl hydroxylase 3 (PHD3) enhances PKM2 binding to HIF-1α and PKM2 coactivator function. Mass spectrometry and anti-hydroxyproline antibody assays demonstrate PKM2 hydroxylation on proline-403/408. PHD3 knockdown inhibits PKM2 coactivator function, reduces glucose uptake and lactate production, and increases O(2) consumption in cancer cells. Thus, PKM2 participates in a positive feedback loop that promotes HIF-1 transactivation and reprograms glucose metabolism in cancer cells. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.

            Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factor 1: master regulator of O2 homeostasis.

              Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates essential homeostatic responses to reduced O2 availability in mammals. Recent studies have provided insights into the O2-dependent regulation of HIF-1 expression, target genes regulated by HIF-1, and the effects of HIF-1 deficiency on cellular physiology and embryonic development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                2 September 2011
                : 6
                : 9
                : e24411
                Affiliations
                [1 ]Cancer Research United Kingdom, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
                [2 ]Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
                [3 ]Laboratory of Biophysics and Bioanalysis, Department of Biochemistry, University College Cork, Cork, Ireland
                Laurentian University, Canada
                Author notes

                Conceived and designed the experiments: CF EG. Performed the experiments: CF LZ DT. Analyzed the data: CF LZ DW BH DP GK. Contributed reagents/materials/analysis tools: DP DW. Wrote the paper: CF EG.

                [¤]

                Current address: School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom

                Article
                PONE-D-11-03157
                10.1371/journal.pone.0024411
                3166325
                21912692
                0a6cbb0d-7aa6-4ce7-8258-fbd348acb030
                Frezza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 February 2011
                : 10 August 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biochemistry
                Bioenergetics
                Energy-Producing Organelles
                Energy-Producing Processes
                Metabolism
                Metabolic Pathways
                Oxygen Metabolism
                Molecular Cell Biology
                Cellular Stress Responses

                Uncategorized
                Uncategorized

                Comments

                Comment on this article