Blog
About

65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Malaria ecology along the Thailand–Myanmar border

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Malaria in Southeast Asia frequently clusters along international borders. For example, while most of Thailand is malaria free, the border region shared with Myanmar continues to have endemic malaria. This spatial pattern is the result of complex interactions between landscape, humans, mosquito vectors, and malaria parasites. An understanding of these complex ecological and socio-cultural interactions is important for designing and implementing malaria elimination efforts in the region. This article offers an ecological perspective on the malaria situation along the Thailand–Myanmar border.

          Discussion

          This border region is long (2000 km), mountainous, and the environment ranges from thick forests to growing urban settlements and wet-rice fields. It is also a biologically diverse region. All five species of malaria known to naturally infect humans are present. At least three mosquito vector species complexes, with widely varying behavioural characteristics, exist in the area. The region is also a hub for ethnic diversity, being home to over ten different ethnolinguistic groups, several of which have been engaged in conflict with the Myanmar government now for over half a century. Given the biological and ethnic diversity, as well as the complex socio-political context, malaria control and elimination in the region is challenging.

          Conclusion

          Despite these complexities, multipronged approaches including collaborations with multiple local organizations, quick access to diagnosis and treatment, prevention of mosquito bites, radical cure of parasites, and mass drug administration appear to be drastically decreasing Plasmodium falciparum infections. Such approaches remain crucial as the region moves toward elimination of P. falciparum and potentially Plasmodium vivax.

          Related collections

          Most cited references 112

          • Record: found
          • Abstract: found
          • Article: not found

          Artemisinin resistance in Plasmodium falciparum malaria.

          Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acquired immunity to malaria.

            Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

              Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.
                Bookmark

                Author and article information

                Contributors
                daniel@shoklo-unit.com
                verena@shoklo-unit.com
                sasithon.puk@mahidol.ac.th
                rose@shoklo-unit.com
                francois@tropmedres.ac
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                5 October 2015
                5 October 2015
                2015
                : 14
                Affiliations
                [ ]Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak Thailand
                [ ]Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
                [ ]Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
                Article
                921
                10.1186/s12936-015-0921-y
                4594738
                © Parker et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Comments

                Comment on this article