109
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum Dipeptidyl Peptidase-4 Activity in Insulin Resistant Patients with Non-Alcoholic Fatty Liver Disease: A Novel Liver Disease Biomarker

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In a cross-sectional study we studied the fasting serum DPP-4 enzymatic activity (sDPP-4) and the insulin resistance index (HOMA2-IR) in gliptin naïve patients with type 2 diabetes and in non-alcoholic fatty liver disease (NAFLD) and in healthy controls (CNTRL).

          Methods and Findings

          sDPP-4 was measured by kinetic assay in 39 NAFLD (F/M:19/20, mean age: 47.42 yrs) and 82 type 2 diabetes (F/M:48/34, 62.8 yrs) patients and 26 (F/M:14/12, 35.3 yrs) controls. Definition of T2D group as patients with type 2 diabetes but without clinically obvious liver disease created non-overlapping study groups. Diagnosis of NAFLD was based on ultrasonography and the exclusion of other etiololgy. Patients in T2D and NAFLD groups were similarly obese. 75 g CH OGTT in 39 NAFLD patients: 24-NGT, 4-IGT or IFG (“prediabetes”), 11-type 2 diabetes. HOMA2-IR: CNTRL: 1.44; T2D-group: 2.62 (p = 0.046 vs CNTRL, parametric tests); NAFLD(NGTonly): 3.23 (p = 0.0013 vs CNTRL); NAFLD(IFG/IGT/type 2 diabetes): 3.82 (p<0.001 vs CNTRL, p = 0.049 vs 2TD group). sDPP-4 activity was higher in NAFLD both with NGT (mean:33.08U/L) and abnormal glucose metabolism (30.38U/L) than in CNTRL (25.89U/L, p<0.001 and p = 0.013) or in T2D groups (23.97U/L, p<0.001 and p = 0.004). Correlations in NAFLD among sDPP-4 and ALT: r = 0.4637,p = 0.0038 and γGT: r = 0.4991,p = 0.0017 and HOMA2-IR: r = 0.5295,p = 0.0026 and among HOMA2-IR and ALT: r = 0.4340,p = 0.0147 and γGT: r = 0.4128,p = 0.0210.

          Conclusions

          The fasting serum DPP-4 activity was not increased in T2D provided that patients with liver disease were intentionally excluded. The high serum DPP-4 activities in NAFLD were correlated with liver tests but not with the fasting plasma glucose or HbA1C supporting that the excess is of hepatic origin and it might contribute to the speedup of metabolic deterioration. The correlation among γGT, ALT and serum DPP-4 activity and also between serum DPP-4 activity and HOMA2-IR in NAFLD strongly suggests that serum DPP-4 activity should be considered as a novel liver disease biomarker.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.

          The combined actions of glucose-dependent insulinotropic polypeptide (GIP) and truncated glucagon-like peptide-1 (tGLP-1) may fully account for the incretin effect. These hormones are released from the small intestine in response to oral glucose and stimulate insulin release. Recently, evidence has been provided demonstrating the degradation of GIP-(1-42) and GLP-1-(7-36)NH2 by the serum enzyme dipeptidyl peptidase IV (DPP IV) into the biologically inactive products GIP-(3-42) and GLP-1-(9-36)NH2. The objective of the current investigation was to develop a method to monitor the degradation of these hormones in vivo. Synthetic peptides were radiolabeled and purified by HPLC. Subsequent degradation of the peptides under various conditions was then monitored by further HPLC analysis. Incubation of [125I]GIP-(1-42) or [125I]GLP-1-(7-36)NH2 with Wistar rat serum or purified DPP IV resulted in the major N-terminal-truncated products [125I]GIP-(3-42) and [125I]GLP-1-(9-36)NH2. These products were significantly reduced when the specific DPP IV inhibitor diprotin A was included in the incubation mixture and were absent when serum from DPP IV-deficient rats was used. When the labeled peptides were infused into rats at hormone levels within the physiological range, over 50% was metabolized to the truncated forms within 2 min. These products were absent when the tracers were infused into DPP IV-deficient animals. It is concluded that DPP IV may be a primary inactivating enzyme of both GIP and tGLP-1 in vivo. As the N-terminal-truncated products of the DPP IV cleavage may not be distinguished from the biologically active hormone by currently employed assays, reports of circulating hormone levels should be reconsidered. The method described in this manuscript may be useful for investigating the durations of action of GIP and tGLP-1 in normal and pathophysiological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Alanine Aminotransferase, γ-Glutamyltransferase, and Incident Diabetes

            OBJECTIVE To estimate and compare associations of alanine aminotransferase (ALT) and γ-glutamyltransferase (GGT) with incident diabetes. RESEARCH DESIGN AND METHODS ALT and GGT were studied as determinants of diabetes in the British Women's Heart and Health Study, a cohort of 4,286 women 60–79 years old (median follow-up 7.3 years). A systematic review and a meta-analysis of 21 prospective, population-based studies of ultrasonography, which diagnosed nonalcoholic fatty liver disease (NAFLD), ALT, and GGT as determinants of diabetes, were conducted, and associations of ALT and GGT with diabetes were compared. RESULTS Ultrasonography-diagnosed NAFLD was associated with more than a doubling in the risk of incident diabetes (three studies). ALT and GGT both predicted diabetes. The fully adjusted hazard ratio (HR) for diabetes per increase in one unit of logged ALT was 1.83 (95% CI 1.57–2.14, I 2 = 8%) and for GGT was 1.92 (1.66–2.21, I 2 = 55%). To directly compare ALT and GGT as determinants of diabetes, the fully adjusted risk of diabetes in the top versus bottom fourth of the ALT and GGT distributions was estimated using data from studies that included results for both markers. For ALT, the HR was 2.02 (1.59–2.58, I 2 = 27%), and for GGT the HR was 2.94 (1.98–3.88, I 2 = 20%), suggesting that GGT may be a better predictor (P = 0.05). CONCLUSIONS Findings are consistent with the role of liver fat in diabetes pathogenesis. GGT may be a better diabetes predictor than ALT, but additional studies with directly determined liver fat content, ALT, and GGT are needed to confirm this finding.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                18 August 2010
                : 5
                : 8
                : e12226
                Affiliations
                [1]Department of Medicine, Semmelweis University, Budapest, Hungary
                Mayo Clinic College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: GF. Performed the experiments: GF. Analyzed the data: GF BW. Contributed reagents/materials/analysis tools: GF LS. Wrote the paper: GF JF. Recruited patients: TV GL JF AS. Helped with the lab work: DG. Designed kinetic assay: LS. Provided institutional framework: ZT KR. Contributed to discussion: AS.

                [†]

                Deceased.

                Article
                10-PONE-RA-16437R1
                10.1371/journal.pone.0012226
                2923594
                20805868
                0b799d2a-d654-4969-8e6c-2af2437bb590
                Firneisz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 February 2010
                : 20 April 2010
                Page count
                Pages: 7
                Categories
                Research Article
                Chemical Biology
                Diabetes and Endocrinology/Type 2 Diabetes
                Gastroenterology and Hepatology/Hepatology
                Pharmacology/Personalized Medicine

                Uncategorized
                Uncategorized

                Comments

                Comment on this article