34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alteration of viral lipid composition by expression of the phospholipid floppase ABCB4 reduces HIV vector infectivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The presence of cholesterol in the Human Immunodeficiency Virus (HIV) lipid envelop is important for viral function as cholesterol depleted viral particles show reduced infectivity. However, it is less well established whether other viral membrane lipids are also important for HIV infection.

          The ABCB4 protein is a phosphatidyl choline (PC) floppase that mediates transport of PC from the inner to the outer membrane leaflet. This property enabled us to modulate the lipid composition of HIV vectors and study the effects on membrane composition and infection efficiency.

          Results

          Virus generated in the presence of ABCB4 was enriched in PC and cholesterol but contained less sphingomyelin (SM). Viral titers were reduced 5.9 fold. These effects were not observed with an inactive ABCB4 mutant. The presence of the ABC transport inhibitor verapamil abolished the effect of ABCB4 expression on viral titers.

          The ABCB4 mediated reduction in infectivity was caused by changes in the viral particles and not by components co purified with the virus because virus made in the presence of ABCB4 did not inhibit virus made without ABCB4 in a competition assay.

          Incorporation of the envelope protein was not affected by the expression of ABCB4. The inhibitory effect of ABCB4 was independent of the viral envelope as the effect was observed with two different envelope proteins.

          Conclusion

          Our data indicate that increasing the PC content of HIV particles reduces infectivity.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The HIV lipidome: a raft with an unusual composition.

          The lipids of enveloped viruses play critical roles in viral morphogenesis and infectivity. They are derived from the host membranes from which virus budding occurs, but the precise lipid composition has not been determined for any virus. Employing mass spectrometry, this study provides a quantitative analysis of the lipid constituents of HIV and a comprehensive comparison with its host membranes. Both a substantial enrichment of the unusual sphingolipid dihydrosphingomyelin and a loss of viral infectivity upon inhibition of sphingolipid biosynthesis in host cells are reported, establishing a critical role for this lipid class in the HIV replication cycle. Intriguingly, the overall lipid composition of native HIV membranes resembles detergent-resistant membrane microdomains and is strikingly different from that of host cell membranes. With this composition, the HIV lipidome provides strong evidence for the existence of lipid rafts in living cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts.

            A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogens: raft hijackers.

              Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2008
                1 February 2008
                : 5
                : 14
                Affiliations
                [1 ]AMC Liver Center, Meibergdreef 69, 1105 BK. Amsterdam, the Netherlands
                Article
                1742-4690-5-14
                10.1186/1742-4690-5-14
                2265746
                18241333
                0b9e5247-8f34-4f51-8c90-61726196069f
                Copyright © 2008 van Til et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2007
                : 1 February 2008
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article