28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human FXR Regulates SHP Expression through Direct Binding to an LRH-1 Binding Site, Independent of an IR-1 and LRH-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRα) is the master transcriptional regulator of bile salt synthesis and transport in liver and intestine. FXR is activated by bile acids, RXRα by the vitamin A–derivative 9-cis retinoic acid (9cRA). Remarkably, 9cRA inhibits binding of FXR/RXRα to its response element, an inverted repeat-1 (IR-1). Still, most FXR/RXRα target genes are maximally expressed in the presence of both ligands, including the small heterodimer partner (SHP). Here, we revisited the FXR/RXRα-mediated regulation of human SHP.

          Methods

          A 579-bp hSHP promoter element was analyzed to locate FXR/chenodeoxycholic acid (CDCA)- and RXRα/9cRA-responsive elements. hSHP promoter constructs were analyzed in FXR/RXRα-transfected DLD-1, HEK293 and HepG2 cells exposed to CDCA, GW4064 (synthetic FXR ligand) and/or 9cRA. FXR-DNA interactions were analyzed by in vitro pull down assays.

          Results

          hSHP promoter elements lacking the previously identified IR-1 (−291/−279) largely maintained their activation by FXR/CDCA, but were unresponsive to 9cRA. FXR-mediated activation of the hSHP promoter was primarily dependent on the −122/−69 region. Pull down assays revealed a direct binding of FXR to the −122/−69 sequence, which was abrogated by site-specific mutations in a binding site for the liver receptor homolog-1 (LRH-1) at −78/−70. These mutations strongly impaired the FXR/CDCA-mediated activation, even in the context of a hSHP promoter containing the IR-1. LRH-1 did not increase FXR/RXRα-mediated activation of hSHP promoter activity.

          Conclusion

          FXR/CDCA-activated expression of SHP is primarily mediated through direct binding to an LRH-1 binding site, which is not modulated by LRH-1 and unresponsive to 9cRA. 9cRA-induced expression of SHP requires the IR-1 that overlaps with a direct repeat-2 (DR-2) and DR-4. This establishes for the first time a co-stimulatory, but independent, action of FXR and RXRα agonists.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis.

          Bile acids repress the transcription of cytochrome P450 7A1 (CYP7A1), which catalyzes the rate-limiting step in bile acid biosynthesis. Although bile acids activate the farnesoid X receptor (FXR), the mechanism underlying bile acid-mediated repression of CYP7A1 remained unclear. We have used a potent, nonsteroidal FXR ligand to show that FXR induces expression of small heterodimer partner 1 (SHP-1), an atypical member of the nuclear receptor family that lacks a DNA-binding domain. SHP-1 represses expression of CYP7A1 by inhibiting the activity of liver receptor homolog 1 (LRH-1), an orphan nuclear receptor that is known to regulate CYP7A1 expression positively. This bile acid-activated regulatory cascade provides a molecular basis for the coordinate suppression of CYP7A1 and other genes involved in bile acid biosynthesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a nuclear receptor that is activated by farnesol metabolites.

            Nuclear hormone receptors comprise a superfamily of ligand-modulated transcription factors that mediate the transcriptional activities of steroids, retinoids, and thyroid hormones. A growing number of related proteins have been identified that possess the structural features of hormone receptors, but that lack known ligands. Known as orphan receptors, these proteins represent targets for novel signaling molecules. We have isolated a mammalian orphan receptor that forms a heterodimeric complex with the retinoid X receptor. A screen of candidate ligands identified farnesol and related metabolites as effective activators of this complex. Farnesol metabolites are generated intracellularly and are required for the synthesis of cholesterol, bile acids, steroids, retinoids, and farnesylated proteins. Intermediary metabolites have been recognized as transcriptional regulators in bacteria and yeast. Our results now suggest that metabolite-controlled intracellular signaling systems are utilized by higher organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis.

              The nuclear bile acid receptor FXR has been proposed to play a central role in the feedback repression of the gene encoding cholesterol 7 alpha-hydroxylase (CYP7A1), the first and rate-limiting step in the biosynthesis of bile acids. We demonstrate that FXR directly regulates expression of fibroblast growth factor-19 (FGF-19), a secreted growth factor that signals through the FGFR4 cell-surface receptor tyrosine kinase. In turn, FGF-19 strongly suppresses expression of CYP7A1 in primary cultures of human hepatocytes and mouse liver through a c-Jun N-terminal kinase (JNK)-dependent pathway. This signaling cascade defines a novel mechanism for feedback repression of bile acid biosynthesis and underscores the vital role of FXR in the regulation of multiple pathways of cholesterol catabolism in the liver.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                3 February 2014
                : 9
                : 2
                : e88011
                Affiliations
                [1]Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, University of Groningen, Groningen, The Netherlands
                University of Bari & Consorzio Mario Negri Sud, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MOH JH MH HM KNF. Performed the experiments: MOH JH MH. Analyzed the data: MOH JH MH KNF. Wrote the paper: MOH MH HM KNF.

                Article
                PONE-D-13-41374
                10.1371/journal.pone.0088011
                3912179
                24498423
                0bd89fe1-af48-460e-bcf6-929b93e8c369
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 October 2013
                : 3 January 2014
                Page count
                Pages: 10
                Funding
                This work was supported by grants from the Dutch Digestive Diseases Foundation (MLDS WS 03-38 to MOH and MLDS MWO 08-70 to MH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                RNA synthesis
                Genetics
                Gene Expression
                Medicine
                Anatomy and Physiology
                Digestive System
                Digestive Physiology
                Gastroenterology and Hepatology
                Biliary Disorders
                Liver Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article