37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The calcium sensor synaptotagmin 7 is required for synaptic facilitation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been known for over 70 years that synaptic strength is dynamically regulated in a use-dependent manner 1 . At synapses with a low initial release probability, closely spaced presynaptic action potentials can result in facilitation, a short-term form of enhancement where each subsequent action potential evokes greater neurotransmitter release 2 . Facilitation can enhance neurotransmitter release manyfold and profoundly influence information transfer across synapses 3 , but the underlying mechanism remains a mystery. Among the proposed mechanisms is that a specialized calcium sensor for facilitation transiently increases the probability of release 2, 4 and is distinct from the fast sensors that mediate rapid neurotransmitter release. Yet such a sensor has never been identified, and its very existence has been disputed 5, 6 . Here we show that synaptotagmin 7 (syt7) is a calcium sensor that is required for facilitation at multiple central synapses. In syt7 knockout mice, facilitation is eliminated even though the initial probability of release and presynaptic residual calcium signals are unaltered. Expression of wild-type syt7 in presynaptic neurons restored facilitation, whereas expression of a mutated syt7 with a calcium-insensitive C2A domain did not. By revealing the role of syt7 in synaptic facilitation, these results resolve a longstanding debate about a widespread form of short-term plasticity, and will enable future studies that may lead to a deeper understanding of the functional importance of facilitation.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term synaptic plasticity.

          Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic computation.

            Neurons are often considered to be the computational engines of the brain, with synapses acting solely as conveyers of information. But the diverse types of synaptic plasticity and the range of timescales over which they operate suggest that synapses have a more active role in information processing. Long-term changes in the transmission properties of synapses provide a physiological substrate for learning and memory, whereas short-term changes support a variety of computations. By expressing several forms of synaptic plasticity, a single neuron can convey an array of different signals to the neural circuit in which it operates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic theory of working memory.

              It is usually assumed that enhanced spiking activity in the form of persistent reverberation for several seconds is the neural correlate of working memory. Here, we propose that working memory is sustained by calcium-mediated synaptic facilitation in the recurrent connections of neocortical networks. In this account, the presynaptic residual calcium is used as a buffer that is loaded, refreshed, and read out by spiking activity. Because of the long time constants of calcium kinetics, the refresh rate can be low, resulting in a mechanism that is metabolically efficient and robust. The duration and stability of working memory can be regulated by modulating the spontaneous activity in the network.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                8 December 2015
                7 January 2016
                07 July 2016
                : 529
                : 7584
                : 88-91
                Affiliations
                [1 ]Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
                Article
                NIHMS742788
                10.1038/nature16507
                4729191
                26738595
                0c79794c-37ad-41d4-acbe-6eec2766d01a

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article