23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in the 5-HT2 A receptor system in the pre-mammillary hypothalamus of the ewe are related to regulation of LH pulsatile secretion by an endogenous circannual rhythm

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We wanted to determine if changes in the expression of serotonin 2A receptor (5HT2 A receptor) gene in the premammillary hypothalamus are associated with changes in reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm.

          Results

          In RSD ewes, density of 5HT2 A receptor mRNA (by in situ hybridization) was significantly higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and 3H-Ketanserin binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes, density of 5HT2 A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissu-equivalent; P < 0.05, respectively).

          Conclusions

          We conclude that these higher 5HT2 A receptor gene expression and binding activity of 5HT2 A receptor in the premammillary hypothalamus are associated with stimulation of LH pulsatility expressed before the development of refractoriness to short days and prior to the decline of reproductive neuroendocrine activity during expression of the endogenous circannual rhythm.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular, pharmacological and functional diversity of 5-HT receptors.

          Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement.

            Photoperiodism is a process whereby organisms are able to use both absolute measures of day length and the direction of day length change as a basis for regulating seasonal changes in physiology and behavior. The use of day length cues allows organisms to essentially track time-of-year and to "anticipate" relatively predictable annual variations in important environmental parameters. Thus, adaptive types of seasonal biological changes can be molded through evolution to fit annual environmental cycles. Studies of the formal properties of photoperiodic mechanisms have revealed that most organisms use circadian oscillators to measure day length. Two types of paradigms, designated as the external and internal coincidence models, have been proposed to account for photoperiodic time measurement by a circadian mechanism. Both models postulate that the timing of light exposure, rather than the total amount of light, is critical to the organism's perception of day length. In mammals, a circadian oscillator(s) in the suprachiasmatic nucleus of the hypothalamus receives photic stimuli via the retinohypothalamic tract. The circadian system regulates the rhythmic secretion of the pineal hormone, melatonin. Melatonin is secreted at night, and the duration of secretion varies in inverse relation to day length; thus, photoperiod information is "encoded" in the melatonin signal. The melatonin signal is presumably "decoded" in melatonin target tissues that are involved in the regulation of a variety of seasonal responses. Variations in photoperiodic response are seen not only between species but also between breeding populations within a species and between individuals within single breeding populations. Sometimes these variations appear to be the result of differences in responsiveness to melatonin; in other cases, variations in photoperiod responsiveness may depend on differences in patterns of melatonin secretion related to circadian variation. Sites of action for melatonin in mammals are not yet well characterized, but potential targets of particular interest include the pars tuberalis of the pituitary gland and the suprachiasmatic nuclei. Both these sites exhibit uptake of radiolabeled melatonin in various species, and there is some evidence for direct action of melatonin at these sites. However, it appears that there are species differences with respect to the importance and specific functions of various melatonin target sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors.

              The distribution of serotonin-2 (5-HT2) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [3H]ketanserin, [3H]mesulergine, [3H]LSD and [3H]spiperone, which are reported to show high affinity for 5-HT2 receptors. Co-incubation with increasing concentrations of several well-known 5-HT2-selective drugs, such as pirenperone, cinanserin and ketanserin, resulted in an inhibition of the binding of the four 3H-labeled ligands to the same areas. However, all of them recognized, in addition to 5-HT2 sites, other populations of binding sites. Receptor densities were quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Our results reveal a heterogeneous distribution of 5-HT2 receptor densities in the rat brain. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT2 receptors. Intermediate concentrations of receptors were found in caudate putamen, nucleus accumbens, layer V of neocortex, ventral dentate gyrus and mammillary bodies. Areas containing only low concentrations of receptors included the thalamus, hippocampus, brainstem, medulla, cerebellum and spinal cord. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT2-selective drugs.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central (London )
                1471-2202
                2003
                28 January 2003
                : 4
                : 1
                Affiliations
                [1 ]Equipe de Neuroendocrinologie et Maîtrise des Fonctions Saisonnières, Unité de Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS- Univ. F. Rabelais, 37380 Nouzilly, France
                [2 ]Reproductive Sciences Program and Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0404, USA
                [3 ]Present adress: UMR 181, INRA-ENVT 23 chemin des Capelles, 31076 Toulouse, France
                Article
                1471-2202-4-1
                10.1186/1471-2202-4-1
                149365
                12553884
                0ca32bcd-7e17-4acb-b449-9b5e385ca3a4
                Copyright © 2003 Chemineau et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 25 November 2002
                : 28 January 2003
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article