4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genomic basis of geographical adaptation to soil nitrogen in rice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.

            Heng Li (2011)
            Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. http://samtools.sourceforge.net. hengli@broadinstitute.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide Efficient Mixed Model Analysis for Association Studies

              Linear mixed models have attracted considerable recent attention as a powerful and effective tool for accounting for population stratification and relatedness in genetic association tests. However, existing methods for exact computation of standard test statistics are computationally impractical for even moderate-sized genome-wide association studies. To deal with this several approximate methods have been proposed. Here, we present an efficient exact method that makes these approximations unnecessary in many settings. This method is roughly n times faster than the widely-used exact method EMMA, where n is the sample size, making exact genome-wide association analysis computationally practical for large numbers of individuals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                January 06 2021
                Article
                10.1038/s41586-020-03091-w
                33408412
                0cea715e-eb0e-4734-9e00-e7eebbcf2dbb
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article