93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Wuhan-Zhuhai (WHZH) cohort study of environmental air particulate matter and the pathogenesis of cardiopulmonary diseases: study design, methods and baseline characteristics of the cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Particulate air pollution has been recognized to be associated with a wide range of adverse health effects, including increased mortality, morbidity, exacerbation of respiratory conditions. However, earlier physiological or pathological changes or long-term bodies’ reaction to air pollutants have not been studied in depth in China. The Wuhan-Zhuhai (WHZH) cohort study is designed to investigate the association between air pollutants exposure and physiological or pathological reactions on respiratory and cardiovascular system.

          Methods/Design

          The cohort is a community-based prospective study that includes 4812 individuals aged 18–80 years. The collections of data were conducted from April to May 2011 in Wuhan city and in May 2012 in Zhuhai city. At baseline, data on demographic and socioeconomic information, occupational history, family disease history, lifestyle, cooking mode, daily travel mode, physical activity and living condition have been collected by questionnaires. Participants underwent an extensive physical examination, including anthropometry, spirometry, electrocardiography, and measurements of blood pressure, heart rate, exhaled nitric oxide and carbon monoxide. Potential conditions in the lung, heart, liver, spleen, and skin were synchronously performed. In addition, samples of morning urine, fasting blood serum and plasma were collected during physical health examination. DNA were extracted and were stored at -80°C. Environment concentrations of particulate matter and chemicals were determined for 15 days in each of four seasons. Participants are followed for physiological or pathological changes or incidence of cardiopulmonary diseases every 3 years.

          Discussion

          The results obtained in WHZH cohort study may increase a better understanding of the relationship between particulate air pollution and its components and possible health damages. And the potential mechanisms underlying the development of cardiopulmonary diseases has implications for the development of prevention and treatment strategies.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994.

          Air pollution in cities has been linked to increased rates of mortality and morbidity in developed and developing countries. Although these findings have helped lead to a tightening of air-quality standards, their validity with respect to public health has been questioned. We assessed the effects of five major outdoor-air pollutants on daily mortality rates in 20 of the largest cities and metropolitan areas in the United States from 1987 to 1994. The pollutants were particulate matter that is less than 10 microm in aerodynamic diameter (PM10), ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. We used a two-stage analytic approach that pooled data from multiple locations. After taking into account potential confounding by other pollutants, we found consistent evidence that the level of PM10 is associated with the rate of death from all causes and from cardiovascular and respiratory illnesses. The estimated increase in the relative rate of death from all causes was 0.51 percent (95 percent posterior interval, 0.07 to 0.93 percent) for each increase in the PM10 level of 10 microg per cubic meter. The estimated increase in the relative rate of death from cardiovascular and respiratory causes was 0.68 percent (95 percent posterior interval, 0.20 to 1.16 percent) for each increase in the PM10 level of 10 microg per cubic meter. There was weaker evidence that increases in ozone levels increased the relative rates of death during the summer, when ozone levels are highest, but not during the winter. Levels of the other pollutants were not significantly related to the mortality rate. There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of Reduced Heart Rate Variability on Risk for Cardiac Events: The Framingham Heart Study

            Although heart rate variability (HRV) is altered in a variety of pathological conditions, the association of reduced HRV with risk for new cardiac events has not been studied in a large community-based population. The first 2 hours of ambulatory ECG recordings obtained on subjects of the Framingham Heart Study who were free of clinically apparent coronary heart disease or congestive heart failure were reprocessed to assess HRV. Five frequency-domain measures and three time-domain measures were obtained. The associations between HRV measures and the incidence of new cardiac events (angina pectroris, myocardial infarction, coronary heart disease death, or congestive heart failure) were assessed with proportional hazards regression analyses. There were 2501 eligible subjects with a mean age of 53 years. During a mean follow-up of 3.5 years, cardiac events occurred in 58 subjects. After adjustment for age, sex, cigarette smoking, diabetes, left ventricular hypertrophy, and other relevant risk factors, all HRV measures except the ratio of low-frequency to high-frequency power were significantly associated with risk for a cardiac event (P = .0016 to .0496). A one-standard deviation decrement in the standard deviation of total normal RR intervals (natural log transformed) was associated with a hazard ratio of 1.47 for new cardiac events (95% confidence interval of 1.16 to 1.86). The estimation of HRV by ambulatory monitoring offers prognostic information beyond that provided by the evaluation of traditional cardiovascular disease risk factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study.

              D Mannino (2003)
              A study was undertaken to define the risk of death among a national cohort of US adults both with and without lung disease. Participants in the first National Health and Nutrition Examination Survey (NHANES I) followed for up to 22 years were studied. Subjects were classified using a modification of the Global Initiative for Chronic Obstructive Lung Disease criteria for chronic obstructive pulmonary disease (COPD) into the following mutually exclusive categories using the forced expiratory volume in 1 second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC ratio, and the presence of respiratory symptoms: severe COPD, moderate COPD, mild COPD, respiratory symptoms only, restrictive lung disease, and no lung disease. Proportional hazard models were developed that controlled for age, race, sex, education, smoking status, pack years of smoking, years since quitting smoking, and body mass index. A total of 1301 deaths occurred in the 5542 adults in the cohort. In the adjusted proportional hazards model the presence of severe or moderate COPD was associated with a higher risk of death (hazard ratios (HR) 2.7 and 1.6, 95% confidence intervals (CI) 2.1 to 3.5 and 1.4 to 2.0), as was restrictive lung disease (HR 1.7, 95% CI 1.4 to 2.0). The presence of both obstructive and restrictive lung disease is a significant predictor of earlier death in long term follow up.
                Bookmark

                Author and article information

                Contributors
                songyuanchao1984@163.com
                13667176505@163.com
                antonuhuang2004@163.com
                mingxz117@hust.edu.cn
                zhtanaijun@gmail.com
                rongyi1007@126.com
                hustsunhui@sina.cn
                sarayunzhou@gmail.com
                cuixiuqing2008@163.com
                yyqhoney@126.com
                hustghkan@126.com
                zhangzh6860807@126.com
                luoxinhust@163.com
                zhangbing4502431@outlook.com
                184277952@qq.com
                hexiaosheng@vip.sina.com
                xiejjgg@hotmail.com
                wut@mails.tjmu.edu.cn
                wchen@mails.tjmu.edu.cn
                jyuan@tjh.tjmu.edu.cn
                Journal
                BMC Public Health
                BMC Public Health
                BMC Public Health
                BioMed Central (London )
                1471-2458
                24 September 2014
                24 September 2014
                2014
                : 14
                : 1
                : 994
                Affiliations
                [ ]Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
                [ ]Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
                [ ]Zhuhai Center for Disease Control & Prevention, Zhuhai, China
                [ ]Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                Article
                7305
                10.1186/1471-2458-14-994
                4247123
                25252923
                0cf37e26-d228-405c-8bcc-fa1c69c38622
                © Song et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 July 2014
                : 19 September 2014
                Categories
                Study Protocol
                Custom metadata
                © The Author(s) 2014

                Public health
                cohort study,air pollutants,particulate matter,pulmonary function,respiratory diseases,cardiovascular diseases

                Comments

                Comment on this article