Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remote Hind-Limb Ischemia Mechanism of Preserved Ejection Fraction During Heart Failure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During acute heart failure (HF), remote ischemic conditioning (RIC) has proven to be beneficial; however, it is currently unclear whether it also extends benefits from chronic congestive, cardiopulmonary heart failure (CHF). Previous studies from our laboratory have shown three phases describing CHF viz. (1) HF with preserved ejection fraction (HFpEF), (2) HF with reduced EF (HFrEF), and (3) HF with reversed EF. Although reciprocal organ interaction, ablation of sympathetic, and calcium signaling genes are associated with HFpEF to HFrEF, the mechanism is unclear. The HFrEF ensues, in part, due to reduced angiogenesis, coronary reserve, and leakage of endocardial endothelial (EE) and finally breakdown of the blood-heart barrier (BHB) integrity. In fact, our hypothesis states that a change in phenotype from compensatory HFpEF to decompensatory HFrEF is determined by a potential decrease in regenerative, proangiogenic factors along with a concomitant increase in epigenetic memory, inflammation that combinedly causes oxidative, and proteolytic stress response. To test this hypothesis, we created CHF by aorta-vena-cava (AV) fistula in a group of mice that were subsequently treated with that of hind-limb RIC. HFpEF vs. HFrEF transition was determined by serial/longitudinal echo measurements. Results revealed an increase in skeletal muscle musclin contents, bone-marrow (CD71), and sympathetic activation (β2-AR) by RIC. We also observed a decrease in vascular density and attenuation of EE-BHB function due to a corresponding increase in the activity of MMP-2, vascular endothelial growth factor (VEGF), caspase, and calpain. This decrease was successfully mitigated by RIC-released skeletal muscle exosomes that contain musclin, the myokine along with bone marrow, and sympathetic activation. In short, based on proteome (omics) analysis, ∼20 proteins that appear to be involved in signaling pathways responsible for the synthesis, contraction, and relaxation of cardiac muscle were found to be the dominant features. Thus, our results support that the CHF phenotype causes dysfunction of cardiac metabolism, its contraction, and relaxation. Interestingly, RIC was able to mitigate many of the deleterious changes, as revealed by our multi-omics findings.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found

          Plasma exosomes protect the myocardium from ischemia-reperfusion injury.

          Exosomes are nanometer-sized vesicles released from cells into the blood, where they can transmit signals throughout the body. Shown to act on the heart, exosomes' composition and the signaling pathways they activate have not been explored. We hypothesized that endogenous plasma exosomes can communicate signals to the heart and provide protection against ischemia and reperfusion injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Remote ischemic conditioning.

            In remote ischemic conditioning (RIC), brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue, or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical, or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microribonucleic acid-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting, and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible, and inexpensive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells

              The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. For example, EVs secreted by stem cells injected into infarcted hearts can induce recovery through the delivery of stem-cell-specific miRNAs. However, the retention of the EVs and the therapeutic effects are short-lived. Here, we show that an engineered hydrogel patch capable of slowly releasing EVs secreted from cardiomyocytes derived from induced pluripotent stem (iPS) cells reduced arrhythmic burden, promoted ejection-fraction recovery, decreased cardiomyocyte apoptosis 24 hours after infarction, and reduced infarct size and cell hypertrophy 4 weeks post-infarction when implanted onto infarcted rat hearts. We also show that the EVs are enriched with cardiac-specific miRNAs known to modulate cardiomyocyte-specific processes. The extended delivery of EVs secreted from iPS-cell-derived cardiomyocytes into the heart may help understand heart recovery and treat heart injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                11 November 2021
                2021
                : 12
                : 745328
                Affiliations
                Department of Physiology, University of Louisville School of Medicine , Louisville, KY, United States
                Author notes

                Edited by: Giuseppe Vergaro, Gabriele Monasterio Tuscany Foundation, Consiglio Nazionale delle Ricerche (CNR), Italy

                Reviewed by: Alexander E. Berezin, Zaporizhia State Medical University, Ukraine; Giovanna Gallo, Sapienza University of Rome, Italy

                These authors have contributed equally to this work

                This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2021.745328
                8632236
                0d265b36-35af-457c-bf08-dfbc91be41e8
                Copyright © 2021 Homme, Zheng, Smolenkova, Singh and Tyagi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 July 2021
                : 12 October 2021
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 45, Pages: 12, Words: 6598
                Funding
                Funded by: National Institutes of Health, doi 10.13039/100000002;
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                congestive heart failure,creatine kinase isoforms,viral myocarditis,matrix metalloproteinases,tissue remodeling

                Comments

                Comment on this article