10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The potential of nanoparticles for the immunization against viral infections

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaccination has a great impact on the prevention and control of infectious diseases. Nanoparticles can deliver immunoactive biomolecules to induce a virus-specific immune response.

          Vaccination has a great impact on the prevention and control of infectious diseases. However, there are still many infectious diseases for which an effective vaccine is missing. Thirty years after the discovery of the AIDS-pathogen (human immunodeficiency virus, HIV) and intensive research, there is still no protective immunity against the HIV infection. Over the past decade, nanoparticulate systems such as virus-like particles, liposomes, polymers and inorganic nanoparticles have received attention as potential delivery vehicles which can be loaded or functionalized with active biomolecules (antigens and adjuvants). Here we compare the properties of different nanoparticulate systems and assess their potential for the development of new vaccines against a range of viral infections.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gold nanoparticles for biology and medicine.

            Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of target geometry in phagocytosis.

              Phagocytosis is a principal component of the body's innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                2015
                2015
                : 3
                : 24
                : 4767-4779
                Article
                10.1039/C5TB00618J
                0d8b9648-5988-4531-a72a-08f481cb57b1
                © 2015
                History

                Comments

                Comment on this article