7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Post-transcriptional control of gene expression during mouse oogenesis.

      Results and problems in cell differentiation
      Animals, Cytoplasmic Granules, metabolism, Embryo, Mammalian, Female, Fertilization, physiology, Gene Expression Regulation, Meiosis, Mice, Oocytes, cytology, Oogenesis, Protein Biosynthesis, RNA, Messenger, Ribonucleoproteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-transcriptional mechanisms play a central role in regulating gene expression during oogenesis and early embryogenesis. Growing oocytes accumulate an enormous quantity of messenger RNAs (mRNAs), but transcription decreases dramatically near the end of growth and is undetectable during meiotic maturation. Following fertilization, the embryo is initially transcriptionally inactive and then becomes active at a species-specific stage of early cleavage. Meanwhile, beginning during maturation and continuing after fertilization, the oocyte mRNAs are eliminated, allowing the embryonic genome to assume control of development. How the mammalian oocyte manages the storage, translation, and degradation of the huge quantity and diversity of mRNAs that it harbours has been the focus of enormous research effort and is the subject of this review. We discuss the roles of sequences within the 3'-untranslated region of certain mRNAs and the proteins that bind to them, sequence-non-specific RNA-binding proteins, and recent studies implicating ribonucleoprotein processing (P-) bodies and cytoplasmic lattices. We also discuss mechanisms that may control the temporally regulated translational activation of different mRNAs during meiotic maturation, as well as the signals that trigger silencing and degradation of the oocyte mRNAs. We close by highlighting areas for future research including the potential key role of small RNAs in regulating gene expression in oocytes.

          Related collections

          Author and article information

          Comments

          Comment on this article