11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes.

      Lancet
      Arginine, Aryldialkylphosphatase, Case-Control Studies, Coronary Disease, complications, enzymology, genetics, Diabetes Mellitus, Type 2, Esterases, metabolism, Female, Genotype, Glutamine, Humans, Male, Middle Aged, Polymorphism, Genetic, Regression Analysis, Risk Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paraoxonase is a high-density-lipoprotein-associated enzyme capable of hydrolysing lipid peroxides. Thus it might protect lipoproteins from oxidation. It has two isoforms, which arise from a glutamine (A isoform) to arginine (B isoform) interchange at position 192. The relevance of this polymorphism to coronary heart disease (CHD) in non-insulin-dependent diabetic patients was investigated in case-control study. Of the 434 patients, 171 had confirmed coronary artery disease; the other 263 had no history of such disease. The B allele and AB+BB genotypes were associated with an increased risk of coronary heart disease. Compared with subjects homozygous for the A allele (AA genotype), the odds ratio of CHD for subjects homozygous for the B allele was 2.5 (95% CI 1.2-5.3) and that for those heterozygous for the B allele was 1.6 (95% CI 1.1-2.4), suggesting a codominant effect on cardiovascular risk. When subjected to multivariate analysis, the B allele remained significantly associated with CHD (odds ratio 1.94, p = 0.03). The paraoxonase gene polymorphism is thus an independent cardiovascular risk factor in non-insulin-dependent diabetic patients. A possible explanation for this finding is that activity of the paraoxonase B isotype does not protect well against lipid oxidation, a major atherogenic pathway.

          Related collections

          Author and article information

          Comments

          Comment on this article