Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Predispositions and plasticity in music and speech learning: neural correlates and implications.

      Science (New York, N.Y.)
      Auditory Cortex, anatomy & histology, physiology, Cognition, Humans, Language Development, Learning, Music, Neuroimaging, Neuronal Plasticity, Speech

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Speech and music are remarkable aspects of human cognition and sensory-motor processing. Cognitive neuroscience has focused on them to understand how brain function and structure are modified by learning. Recent evidence indicates that individual differences in anatomical and functional properties of the neural architecture also affect learning and performance in these domains. Here, neuroimaging findings are reviewed that reiterate evidence of experience-dependent brain plasticity, but also point to the predictive validity of such data in relation to new learning in speech and music domains. Indices of neural sensitivity to certain stimulus features have been shown to predict individual rates of learning; individual network properties of brain activity are especially relevant in this regard, as they may reflect anatomical connectivity. Similarly, numerous studies have shown that anatomical features of auditory cortex and other structures, and their anatomical connectivity, are predictive of new sensory-motor learning ability. Implications of this growing body of literature are discussed.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Musical training shapes structural brain development.

          The human brain has the remarkable capacity to alter in response to environmental demands. Training-induced structural brain changes have been demonstrated in the healthy adult human brain. However, no study has yet directly related structural brain changes to behavioral changes in the developing brain, addressing the question of whether structural brain differences seen in adults (comparing experts with matched controls) are a product of "nature" (via biological brain predispositions) or "nurture" (via early training). Long-term instrumental music training is an intense, multisensory, and motor experience and offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians.

            Using magnetoencephalography (MEG), we compared the processing of sinusoidal tones in the auditory cortex of 12 non-musicians, 12 professional musicians and 13 amateur musicians. We found neurophysiological and anatomical differences between groups. In professional musicians as compared to non-musicians, the activity evoked in primary auditory cortex 19-30 ms after stimulus onset was 102% larger, and the gray matter volume of the anteromedial portion of Heschl's gyrus was 130% larger. Both quantities were highly correlated with musical aptitude, as measured by psychometric evaluation. These results indicate that both the morphology and neurophysiology of Heschl's gyrus have an essential impact on musical aptitude.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain mechanisms in early language acquisition.

              The last decade has produced an explosion in neuroscience research examining young children's early processing of language. Noninvasive, safe functional brain measurements have now been proven feasible for use with children starting at birth. The phonetic level of language is especially accessible to experimental studies that document the innate state and the effect of learning on the brain. The neural signatures of learning at the phonetic level can be documented at a remarkably early point in development. Continuity in linguistic development from infants' earliest brain responses to phonetic stimuli is reflected in their language and prereading abilities in the second, third, and fifth year of life, a finding with theoretical and clinical impact. There is evidence that early mastery of the phonetic units of language requires learning in a social context. Neuroscience on early language learning is beginning to reveal the multiple brain systems that underlie the human language faculty. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                24179219
                10.1126/science.1238414

                Chemistry
                Auditory Cortex,anatomy & histology,physiology,Cognition,Humans,Language Development,Learning,Music,Neuroimaging,Neuronal Plasticity,Speech

                Comments

                Comment on this article