15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-term mesocosms study of the effects of ocean acidification on growth and physiology of the sea urchin Echinometra mathaei.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent research on the impact of ocean acidification (OA) has highlighted that it is important to conduct long-term experiments including ecosystem interactions in order to better predict the possible effects of elevated pCO2. The goal of the present study was to assess the long-term impact of OA on a suite of physiological parameters of the sea urchin Echinometra mathaei in more realistic food conditions. A long-term experiment was conducted in mesocosms provided with an artificial reef in which the urchins principally fed on algae attached to the reef calcareous substrate. Contrasted pH conditions (pH 7.7 vs control) were established gradually over six months and then maintained for seven more months. Acid-base parameters of the coelomic fluid, growth and respiration rate were monitored throughout the experiment. Results indicate that E. mathaei should be able to regulate its extracellular pH at long-term, through bicarbonate compensation. We suggest that, within sea urchins species, the ability to accumulate bicarbonates is related to their phylogeny but also on the quantity and quality of available food. Growth, respiration rate and mechanical properties of the test were not affected. This ability to resist OA levels expected for 2100 at long-term could determine the future of coral reefs, particularly reefs where E. mathaei is the major bioeroder.

          Related collections

          Author and article information

          Journal
          Mar. Environ. Res.
          Marine environmental research
          Elsevier BV
          1879-0291
          0141-1136
          Feb 2015
          : 103
          Affiliations
          [1 ] Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium; Laboratoire d'Ecologie Numérique des Milieux Aquatiques, Institut des Biosciences, Université de Mons, 23 Place du Parc, B7000 Mons, Belgium. Electronic address: lmoulin@ulb.ac.be.
          [2 ] Laboratoire d'Ecologie Numérique des Milieux Aquatiques, Institut des Biosciences, Université de Mons, 23 Place du Parc, B7000 Mons, Belgium.
          [3 ] Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium; Laboratory for Analytical, Environmental and Geo-Chemistry, Earth Systems Science Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
          [4 ] Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP 160/15, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.
          Article
          S0141-1136(14)00195-0
          10.1016/j.marenvres.2014.11.009
          25490159
          106f1bcd-ebb3-45c1-9f2d-ef38dcd60e9d
          History

          Echinometra mathaei,Acid–base regulation,Coral reefs,Growth,Long-term,Mesocosms,Metabolism,Ocean acidification,Sea urchins

          Comments

          Comment on this article