45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A chemical and phosphoproteomic characterization of dasatinib action in lung cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe a strategy to comprehend signaling pathways active in lung cancer cells and targeted by dasatinib employing chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different kinase targets of dasatinib. These include SFK members (LYN, SRC, FYN, LCK, YES), non-receptor tyrosine kinases (FRK, BRK, ACK), and receptor tyrosine kinases (Ephrin receptors, DDR1, EGFR). Using quantitative phosphoproteomics we identified peptides corresponding to autophosphorylation sites of these tyrosine kinases that are inhibited in a concentration-dependent manner by dasatinib. Using drug resistant gatekeeper mutants, we show that SFK kinases, particularly SRC and FYN, as well as EGFR are relevant targets for dasatinib action. The combined mass spectrometry based approach described here provides a system-level view of dasatinib action in cancer cells and suggests both functional targets and rationale combinatorial therapeutic strategies.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

          Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

            Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oncogenic kinase signalling.

              Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nature chemical biology
                1552-4450
                1552-4469
                28 January 2010
                28 February 2010
                April 2010
                1 October 2010
                : 6
                : 4
                : 291-299
                Affiliations
                [1 ] Department of Thoracic Oncology Program, H. Lee Moffitt Cancer Center and Research Institute; Tampa, FL, USA 33612
                [2 ] CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
                [3 ] Proteomics and Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute; Tampa, FL, USA 33612
                [4 ] Bioinformatics Program, H. Lee Moffitt Cancer Center and Research Institute; Tampa, FL, USA 33612
                Author notes
                [§ ]Correspondences should be addressed to: Eric B. Haura, Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, MRC3 East, Room 3056,F, 12902 Magnolia Drive, Tampa, Florida 33612-9497, Eric.haura@ 123456moffitt.org , phone: 813-903-6827, fax: 813-903-6817. John M. Koomen, Molecular Oncology and Proteomics, H. Lee Moffitt Cancer Center & Research Institute, SRB3, 12902 Magnolia Drive, Tampa, FL 33612, John.koomen@ 123456moffitt.org , Phone: (813) 745-8524 Fax: (813) 745-3829. Giulio Superti-Furga, Director, CeMM Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19, A-1090 Vienna, gsuperti@ 123456cemm.oeaw.ac.at , Phone: +43-1-40 160 70001
                [*]

                these authors contributed equally to this work

                Article
                nihpa171211
                10.1038/nchembio.332
                2842457
                20190765
                118b1b98-9768-485c-b494-467ba39e1315

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Cancer Institute : NCI
                Award ID: R01 CA123174-02 ||CA
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article