39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma.

      Gastroenterology
      genetics, Adenocarcinoma, metabolism, pathology, Barrett Esophagus, Cell Line, Tumor, Cell Proliferation, Cell Transformation, Neoplastic, DNA Methylation, DNA, Neoplasm, Esophageal Neoplasms, Gene Expression Regulation, Neoplastic, Humans, Microfilament Proteins, Promoter Regions, Genetic, RNA, Long Noncoding, RNA, Small Interfering

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alterations in methylation of protein-coding genes are associated with Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Dysregulation of noncoding RNAs occurs during carcinogenesis but has never been studied in BE or EAC. We applied high-resolution methylome analysis to identify changes at genomic regions that encode noncoding RNAs in BE and EAC. We analyzed methylation of 1.8 million CpG sites using massively parallel sequencing-based HELP tagging in matched EAC, BE, and normal esophageal tissues. We also analyzed human EAC (OE33, SKGT4, and FLO-1) and normal (HEEpic) esophageal cells. BE and EAC exhibited genome-wide hypomethylation, significantly affecting intragenic and repetitive genomic elements as well as noncoding regions. These methylation changes targeted small and long noncoding regions, discriminating normal from matched BE or EAC tissues. One long noncoding RNA, AFAP1-AS1, was extremely hypomethylated and overexpressed in BE and EAC tissues and EAC cells. Its silencing by small interfering RNA inhibited proliferation and colony-forming ability, induced apoptosis, and reduced EAC cell migration and invasion without altering the expression of its protein-coding counterpart, AFAP1. BE and EAC exhibit reduced methylation that includes noncoding regions. Methylation of the long noncoding RNA AFAP1-AS1 is reduced in BE and EAC, and its expression inhibits cancer-related biologic functions of EAC cells. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article