+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Renal Sodium-Glucose Cotransporter Activity and Aquaporin-2 Expression in Rat Kidney during Chronic Nitric Oxide Synthase Inhibition

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background/Aims: The renal sodium glucose cotransporter (SGLT2) and the water channel aquaporin-2 (AQP2) play a critical role in tubular sodium and water reabsorption and in the regulation of extracellular fluid volume both in physiologic and pathophysiologic conditions. However, there is little information about SGLT2 and AQP2 expression and/or activity in hypertension and there are no reports during hypertension induced by chronic nitric oxide synthase (NOS) inhibition. Methods: Hypertension was induced in rats by oral administration of N<sup>G</sup>-nitro- L-arginine methyl ester ( L-NAME) (20 mg/kg/24 h) for 6 (H6) or 12 (H12) weeks. SGLT2 activity was measured using α-<sup>14</sup>C-methylglucose active uptake. The expression level of transporters was assessed by immunohistochemistry and/or immunoblotting. Results: SGLT2 activity was reduced in both H6 and H12; this was due neither to a decrease in SGLT2 expression nor to a change in membrane phospholipid composition. In H6, AQP2 expression diminished only in the inner medulla (IM), while in H12 it diminished in both outer (OM) and IM. This reduced expression of AQP2 may partially account for the increased urinary volume and decreased urinary osmolality in H12, since we obtained a strong correlation between AQP2 expression and these urinary parameters in both OM and IM. Conclusion: We propose that in rats in which hypertension is induced by NOS inhibition, SGLT2 activity and AQP2 expression are modified to compensate for the elevated arterial pressure. However, we cannot discount the possibility that the observed changes are due to the decrease in NO production itself.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension

            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells.

            In collecting duct principal cells, aquaporin 2 (AQP2) is shuttled from intracellular vesicles to the plasma membrane upon vasopressin (VP) stimulation. VP activates adenylyl cyclase, increases intracellular cAMP, activating protein kinase A (PKA) to phosphorylate AQP2 on the COOH-terminal residue, serine 256. Using rat kidney slices and LLC-PK1 cells stably expressing AQP2 (LLC-AQP2 cells), we now show that AQP2 trafficking can be stimulated by cAMP-independent pathways. In these systems, the nitric oxide (NO) donors sodium nitroprusside (SNP) and NONOate and the NO synthase substrate L-arginine mimicked the effect of VP, stimulating relocation of AQP2 from cytoplasmic vesicles to the plasma membrane. Unlike VP, these other agents did not increase intracellular cAMP. However, SNP increased intracellular cGMP, and exogenous cGMP stimulated AQP2-membrane insertion. Atrial natriuretic factor, which signals via cGMP, also stimulated AQP2 translocation. The VP and SNP effects were blocked by the kinase inhibitor H89. SNP did not stimulate membrane insertion of AQP2 in LLC-PK1 cells expressing the phosphorylation-deficient mutant 256SerAla-AQP2, indicating that phosphorylation of Ser256 is required for signaling. Both PKA and cGMP-dependent protein kinase G phosphorylated AQP2 on this COOH-terminal residue in vitro. These results demonstrate a novel, cAMP-independent and cGMP-dependent pathway for AQP2 membrane insertion in renal epithelial cells.
              • Record: found
              • Abstract: found
              • Article: not found

              Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms.

              Nitric oxide (NO) is produced in almost all tissues and organs, exerting a variety of biological actions under physiological and pathological conditions. NO is synthesized by three different isoforms of NO synthase (NOS), including neuronal, inducible, and endothelial NOSs. Because there are substantial compensatory interactions among the NOS isoforms, the ultimate roles of endogenous NO in our body still remain to be fully elucidated. Here, we have successfully developed mice in which all three NOS genes are completely deleted by crossbreeding singly NOS-/- mice. NOS expression and activities were totally absent in the triply NOS-/- mice before and after treatment with lipopolysaccharide. Although the triply NOS-/- mice were viable and appeared normal, their survival and fertility rates were markedly reduced as compared with the wild-type mice. Furthermore, these mice exhibited marked hypotonic polyuria, polydipsia, and renal unresponsiveness to an antidiuretic hormone, vasopressin, all of which are characteristics consistent with nephrogenic diabetes insipidus. In the kidney of the triply NOS-/- mice, vasopressin-induced cAMP production and membranous aquaporin-2 water channel expression were reduced associated with tubuloglomerular lesion formation. These results provide evidence that the NOS system plays a critical role in maintaining homeostasis, especially in the kidney.

                Author and article information

                Nephron Physiol
                Nephron Physiology
                S. Karger AG
                November 2007
                16 October 2007
                : 107
                : 3
                : p77-p86
                aCátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires; bIQUIFIB, CONICET, Buenos Aires, Argentina
                109822 Nephron Physiol 2007;107:p77–p86
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 2, References: 48, Pages: 1
                Original Paper


                Comment on this article