86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3

      , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report here the purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3. The NH2-terminal 85 amino acids of Apaf-1 show 21% identity and 53% similarity to the NH2-terminal prodomain of the Caenorhabditis elegans caspase, CED-3. This is followed by 320 amino acids that show 22% identity and 48% similarity to CED-4, a protein that is believed to initiate apoptosis in C. elegans. The COOH-terminal region of Apaf-1 comprises multiple WD repeats, which are proposed to mediate protein-protein interactions. Cytochrome c binds to Apaf-1, an event that may trigger the activation of caspase-3, leading to apoptosis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked.

          Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

            The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Programmed cell death in animal development.

                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                August 1997
                August 1997
                : 90
                : 3
                : 405-413
                Article
                10.1016/S0092-8674(00)80501-2
                9267021
                11e20398-7a36-4b07-b86c-844a45df6cea
                © 1997

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article