5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mathematical Modelling and Analysis of Transmission Dynamics of Lassa Fever

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sub-Saharan Africa harbours the majority of the burden of Lassa fever. Clinical diseases, as well as high seroprevalence, have been documented in Nigeria, Sierra Leone, Liberia, Guinea, Ivory Coast, Ghana, Senegal, Upper Volta, Gambia, and Mali. Deaths from Lassa fever occur all year round but naturally peak during the dry season. Annually, the number of people infected is estimated at 100,000 to 300,000, with approximately 5,000 deaths. There have been some work done on the dynamics of Lassa fever disease transmission, but to the best of our knowledge, none has been able to capture the seasonal variation of Mastomys rodent population and its impact on the transmission dynamics. In this work, a periodically forced seasonal nonautonomous system of a nonlinear ordinary differential equation is developed that captures the dynamics of Lassa fever transmission and seasonal variation in the birth of Mastomys rodents where time was measured in days to capture seasonality. It was shown that the model is epidemiologically meaningful and mathematically well posed by using the results from the qualitative properties of the solution of the model. A time-dependent basic reproduction number R L t is obtained such that its yearly average is written as R ˜ L < 1 , when the disease does not invade the population (means that the number of infected humans always decreases in the seasons of transmission), and R ˜ L > 1 , when the disease remains constantly and is invading the population, and it was detected that R ˜ L R L . We also performed some evaluation of the Lassa fever disease intervention strategies using the elasticity of the equilibrial prevalence in order to predict the optimal intervention strategies that can be useful in guiding the local national control program on Lassa fever disease to make a proper decision on the intervention packages. Numerical simulations were carried out to illustrate the analytical results, and we found that the numerical simulations of the model showed that possible combined intervention strategies would reduce the spread of the disease. It was established that, to eliminate Lassa fever disease, treatments with ribavirin must be provided early to reduce mortality and other preventive measures like an educational campaign, community hygiene, isolation of infected humans, and culling/destruction of rodents must be applied to also reduce the morbidity of the disease. Finally, the obtained results gave a primary framework for planning and designing cost-effective strategies for good interventions in eliminating Lassa fever.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis.

          Arenaviruses are rodent-borne agents of diseases, including potentially lethal human hemorrhagic fevers. These enveloped viruses encapsidate a bisegmented ambisense single-stranded RNA genome that can be packaged in variable copy number. Electron cryomicroscopy and image analysis of New World Pichinde and Tacaribe arenaviruses and Old World lymphocytic choriomeningitis virus revealed pleomorphic enveloped particles ranging in diameter from approximately 400 to approximately 2,000 A. The surface spikes were spaced approximately 100 A apart and extended approximately 90 A from the maximum phospholipid headgroup density of the outer bilayer leaflet. Distinctive stalk and head regions extended radially approximately 30 and approximately 60 A from the outer bilayer leaflet, respectively. Two interior layers of density apposed to the inner leaflet of the viral lipid bilayer were assigned as protein Z and nucleoprotein (NP) molecules on the basis of their appearance, spacing, and projected volume. Analysis of en face views of virions lacking the GP-C spikes showed reflections consistent with paracrystalline packing of the NP molecules in a lattice with edges of approximately 57 and approximately 74 A. The structural proteins of retroviruses and arenaviruses assemble with similar radial density distributions, using common cellular components.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria

            Lassa fever (LF) is a zoonotic disease that is widespread in West Africa and involves animal-to-human and human-to-human transmission. Animal-to-human transmission occurs upon exposure to rodent excreta and secretions, i.e. urine and saliva, and human-to-human transmission occurs via the bodily fluids of an infected person. To elucidate the seasonal drivers of LF epidemics, we employed a mathematical model to analyse the datasets of human infection, rodent population dynamics and climatological variations and capture the underlying transmission dynamics. The surveillance-based incidence data of human cases in Nigeria were explored, and moreover, a mathematical model was used for describing the transmission dynamics of LF in rodent populations. While quantifying the case fatality risk and the rate of exposure of humans to animals, we explicitly estimated the corresponding contact rate of humans with infected rodents, accounting for the seasonal population dynamics of rodents. Our findings reveal that seasonal migratory dynamics of rodents play a key role in regulating the cyclical pattern of LF epidemics. The estimated timing of high exposure of humans to animals coincides with the time shortly after the start of the dry season and can be associated with the breeding season of rodents in Nigeria. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of seasonal host birth rates on disease persistence.

              In this paper, we add seasonality to the birth rate of an SIR model with density dependence in the death rate. We find that disease persistence can be explained by considering the average value of the seasonal term. If the basic reproductive ratio R(0)>1 with this average value then the disease will persist and if R(0)<1 with this average value then the disease will die out. However, if the underlying non-seasonal model displays oscillations towards the equilibrium then the dynamics of the seasonal model can become more complex. In this case, the seasonality can interact with the underlying oscillations, resonate and the population can display a range of complex behaviours including chaos. We discuss these results in terms of two examples, Cowpox in bank voles and Rabbit Haemorrhagic disease in rabbits.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Mathematics
                Journal of Applied Mathematics
                Hindawi Limited
                1110-757X
                1687-0042
                March 12 2020
                March 12 2020
                : 2020
                : 1-18
                Affiliations
                [1 ]Laboratory of Modelling in Infectious Diseases and Applied Sciences (LOMIDAS), Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
                [2 ]Department of Mathematics, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
                [3 ]Department of Microbiology, Federal University Oye Ekiti, Ekiti State, Nigeria
                Article
                10.1155/2020/6131708
                11f12262-5d26-4c05-9ac1-d0a5e90107ae
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article