0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins

      , , ,
      Journal of Hazardous Materials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible

            A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein–protein association data for a large number of organisms. The associations in STRING include direct (physical) interactions, as well as indirect (functional) interactions, as long as both are specific and biologically meaningful. Apart from collecting and reassessing available experimental data on protein–protein interactions, and importing known pathways and protein complexes from curated databases, interaction predictions are derived from the following sources: (i) systematic co-expression analysis, (ii) detection of shared selective signals across genomes, (iii) automated text-mining of the scientific literature and (iv) computational transfer of interaction knowledge between organisms based on gene orthology. In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from inside the popular Cytoscape software framework. Further improvements include automated background analysis of user inputs for functional enrichments, and streamlined download options. The STRING resource is available online, at http://string-db.org/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools

              Abstract PANTHER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) is a resource for the evolutionary and functional classification of genes from organisms across the tree of life. We report the improvements we have made to the resource during the past two years. For evolutionary classifications, we have added more prokaryotic and plant genomes to the phylogenetic gene trees, expanding the representation of gene evolution in these lineages. We have refined many protein family boundaries, and have aligned PANTHER with the MEROPS resource for protease and protease inhibitor families. For functional classifications, we have developed an entirely new PANTHER GO-slim, containing over four times as many Gene Ontology terms as our previous GO-slim, as well as curated associations of genes to these terms. Lastly, we have made substantial improvements to the enrichment analysis tools available on the PANTHER website: users can now analyze over 900 different genomes, using updated statistical tests with false discovery rate corrections for multiple testing. The overrepresentation test is also available as a web service, for easy addition to third-party sites.
                Bookmark

                Author and article information

                Journal
                Journal of Hazardous Materials
                Journal of Hazardous Materials
                Elsevier BV
                03043894
                June 2022
                June 2022
                : 432
                : 128654
                Article
                10.1016/j.jhazmat.2022.128654
                35286933
                11f33182-2ed2-4c2a-8ff3-0181fc13ef78
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article