142
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ∼90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R 2>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ∼1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ∼3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Solexa Ltd.

          Solexa Ltd is developing an integrated system, based on a breakthrough single molecule sequencing technology, to address a US$2 billion market that is expected to grow exponentially alongside and as a consequence of further technological enhancements. The system, software and consumables will initially be sold to research organizations, pharmaceutical companies and diagnostic companies that will sequence large regions of genomic DNA, including whole genomes, at costs several orders of magnitude below current levels. Solexa expects to launch its first product in 2006, and as it continues to make time and cost efficiencies, additional products will be launched into the expanding markets that will have broad applications in basic research through to healthcare management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accurate determination of microbial diversity from 454 pyrosequencing data.

            We present an algorithm, PyroNoise, that clusters the flowgrams of 454 pyrosequencing reads using a distance measure that models sequencing noise. This infers the true sequences in a collection of amplicons. We pyrosequenced a known mixture of microbial 16S rDNA sequences extracted from a lake and found that without noise reduction the number of operational taxonomic units is overestimated but using PyroNoise it can be accurately calculated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate multiplex polony sequencing of an evolved bacterial genome.

              We describe a DNA sequencing technology in which a commonly available, inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic DNA sequencing automation. We apply this technology to resequence an evolved strain of Escherichia coli at less than one error per million consensus bases. A cell-free, mate-paired library provided single DNA molecules that were amplified in parallel to 1-micrometer beads by emulsion polymerase chain reaction. Millions of beads were immobilized in a polyacrylamide gel and subjected to automated cycles of sequencing by ligation and four-color imaging. Cost per base was roughly one-ninth as much as that of conventional sequencing. Our protocols were implemented with off-the-shelf instrumentation and reagents.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 February 2012
                : 7
                : 2
                : e30087
                Affiliations
                [1 ]School of Biology and Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                [2 ]School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                [3 ]Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
                [4 ]Department of Human Genetics, Emory University, Atlanta, Georgia, United States of America
                Universidad Miguel Hernandez, Spain
                Author notes

                Conceived and designed the experiments: CL NK KTK. Performed the experiments: CL DT. Analyzed the data: CL. Contributed reagents/materials/analysis tools: NK TR. Wrote the paper: CL KTK.

                Article
                PONE-D-11-17842
                10.1371/journal.pone.0030087
                3277595
                22347999
                12055673-b357-4e22-8809-7f073b944f21
                Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 September 2011
                : 13 December 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Biotechnology
                Computational Biology
                Genomics
                Ecology
                Microbiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article