Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream . P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          The silent threat: asymptomatic parasitemia and malaria transmission.

          Scale-up of malaria control interventions has resulted in a substantial decline in global malaria morbidity and mortality. Despite this achievement, there is evidence that current interventions alone will not lead to malaria elimination in most malaria-endemic areas and additional strategies need to be considered. Use of antimalarial drugs to target the reservoir of malaria infection is an option to reduce the transmission of malaria between humans and mosquito vectors. However, a large proportion of human malaria infections are asymptomatic, requiring treatment that is not triggered by care-seeking for clinical illness. This article reviews the evidence that asymptomatic malaria infection plays an important role in malaria transmission and that interventions to target this parasite reservoir may be needed to achieve malaria elimination in both low- and high-transmission areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global Epidemiology of Plasmodium vivax

            Plasmodium vivax is the most widespread human malaria, putting 2.5 billion people at risk of infection. Its unique biological and epidemiological characteristics pose challenges to control strategies that have been principally targeted against Plasmodium falciparum. Unlike P. falciparum, P. vivax infections have typically low blood-stage parasitemia with gametocytes emerging before illness manifests, and dormant liver stages causing relapses. These traits affect both its geographic distribution and transmission patterns. Asymptomatic infections, high-risk groups, and resulting case burdens are described in this review. Despite relatively low prevalence measurements and parasitemia levels, along with high proportions of asymptomatic cases, this parasite is not benign. Plasmodium vivax can be associated with severe and even fatal illness. Spreading resistance to chloroquine against the acute attack, and the operational inadequacy of primaquine against the multiple attacks of relapse, exacerbates the risk of poor outcomes among the tens of millions suffering from infection each year. Without strategies accounting for these P. vivax-specific characteristics, progress toward elimination of endemic malaria transmission will be substantially impeded.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis

              Summary Background Chloroquine is the first-line treatment for Plasmodium vivax malaria in most endemic countries, but resistance is increasing. Monitoring of antimalarial efficacy is essential, but in P vivax infections the assessment of treatment efficacy is confounded by relapse from the dormant liver stages. We systematically reviewed P vivax malaria treatment efficacy studies to establish the global extent of chloroquine resistance. Methods We searched Medline, Web of Science, Embase, and the Cochrane Database of Systematic Reviews to identify studies published in English between Jan 1, 1960, and April 30, 2014, which investigated antimalarial treatment efficacy in P vivax malaria. We excluded studies that did not include supervised schizonticidal treatment without primaquine. We determined rates of chloroquine resistance according to P vivax malaria recurrence rates by day 28 whole-blood chloroquine concentrations at the time of recurrence and study enrolment criteria. Findings We identified 129 eligible clinical trials involving 21 694 patients at 179 study sites and 26 case reports describing 54 patients. Chloroquine resistance was present in 58 (53%) of 113 assessable study sites, spread across most countries that are endemic for P vivax. Clearance of parasitaemia assessed by microscopy in 95% of patients by day 2, or all patients by day 3, was 100% predictive of chloroquine sensitivity. Interpretation Heterogeneity of study design and analysis has confounded global surveillance of chloroquine-resistant P vivax, which is now present across most countries endemic for P vivax. Improved methods for monitoring of drug resistance are needed to inform antimalarial policy in these regions. Funding Wellcome Trust (UK).
                Bookmark

                Author and article information

                Contributors
                habtkass@yahoo.com
                abule2002@yahoo.com
                guiyuny@hs.uci.edu
                Journal
                Trop Dis Travel Med Vaccines
                Trop Dis Travel Med Vaccines
                Tropical Diseases, Travel Medicine and Vaccines
                BioMed Central (London )
                2055-0936
                15 December 2022
                15 December 2022
                2022
                : 8
                : 27
                Affiliations
                [1 ]GRID grid.7123.7, ISNI 0000 0001 1250 5688, Department of Microbial, Cellular & Molecular Biology, , Addis Ababa University, ; Addis Ababa, Ethiopia
                [2 ]Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
                [3 ]GRID grid.266093.8, ISNI 0000 0001 0668 7243, Program in Public Health, , University of California at Irvine, ; Irvine, CA 92697 USA
                Article
                185
                10.1186/s40794-022-00185-3
                9753897
                36522671
                124023e8-5fcb-486a-95bb-c3fa58f1eb34
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 March 2022
                : 23 November 2022
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                p. vivax,p. falciparum,hypnozoite,primaquine,g6pd,cyp 2d6,tafenoquine

                Comments

                Comment on this article