5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Variations of dissolved organic matter and Cu fractions in rhizosphere soil induced by the root activities of castor bean.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The root soil interaction affects metal bioavailability in the rhizosphere, thus impacting the uptake and accumulation of metals by plants. In this study, a greenhouse experiment using a root-bag technique for castor bean plants was conducted to determine the i) rhizosphere effect on the fractions of Cu, and ii) the characteristics of dissolved organic matter (DOM) in the rhizosphere soil. Results showed that the Cu concentration in the leaves, stems, and roots was 15.41, 6.71, and 47.85 mg kg-1, respectively, in the control and reached up to 96.5, 254.9, and 3204 mg kg-1 in Cu400 treatment, respectively. After cultivating castor bean plants, the concentration of acid exchangeable Cu in rhizosphere soil was higher than that in the bulk soil for the same Cu addition, whereas the concentrations of reducible Cu, oxidizable Cu, and residual Cu in the rhizosphere soil were all lower than those in the bulk soil, respectively. In comparison to the bulk soil, the pH decreased while the total nitrogen and total carbon concentrations both increased in the rhizosphere soil. Moreover, the concentrations of total low molecular weight organic acids (LMWOAs) and total amino acids in the rhizosphere soil of the Cu treatments increased by between 15.18% to 47.17% and 36.35%-200%, respectively with respect to the control. The less complex DOM with a high LMWOAs concentration in the rhizosphere soil shifted the soil Cu from a relative stable fraction to available fractions.

          Related collections

          Author and article information

          Journal
          Chemosphere
          Chemosphere
          Elsevier BV
          1879-1298
          0045-6535
          Sep 2020
          : 254
          Affiliations
          [1 ] Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
          [2 ] Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
          [3 ] Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
          [4 ] Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh.
          [5 ] Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address: hqhu@mail.hzau.edu.cn.
          Article
          S0045-6535(20)30993-0
          10.1016/j.chemosphere.2020.126800
          32334255
          124a5052-8650-442e-8eed-ac58733150b0
          Copyright © 2020 Elsevier Ltd. All rights reserved.
          History

          BCR Sequential extraction,Bioremediation,Copper,Dissolved organic matter,Rhizosphere,Root exudates

          Comments

          Comment on this article