4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chirp assisted ion acceleration via relativistic self induced transparency

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study the effect of the chirped laser pulse on the transmission and associated ion acceleration by the sub-wavelength target. In the chirped laser pulses, the pulse frequency has a temporal variation about its fundamental frequency, which manifests to the temporal dependence of the critical density (\(n_c\)). In this work we used a chirp model which is beyond the linear approximation. For negatively (positively) chirped pulses, the high (low) frequency component of the pulse interacts with the target initially followed by the low (high) frequency component. The threshold plasma density for the transmission of the pulse is found to be higher for the negatively chirped laser pulses as compared to the unchirped or positively chirped pulses. The enhanced transmission of the negatively chirped pulses for higher densities (\(6n_c\)) results in very efficient heating of the target electrons, creating a very stable and persistent longitudinal electrostatic field behind the target. The void of the electrons results in expansion of the target ions in either direction, resulting in the broad energy spectrum. We have introduced a very thin, low density (\(< n_c\)) secondary layer behind the primary layer. The ions from the secondary layer are then found to be accelerated as a mono-energetic bunch under the influence of the electrostatic field created by the primary layer upon interaction by the negatively chirped pulse. Under the optimum conditions, the maximum energy of the protons are found to be \(\sim 100\) MeV for 10 fs (intensity fwhm); Circularly Polarized; Gaussian; negatively chirped laser pulse with peak intensity \(\sim 8.5\times 10^{20}\) W/cm\(^2\).

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          A laser-plasma accelerator producing monoenergetic electron beams.

          Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

            High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Towards ion beam therapy based on laser plasma accelerators

                Bookmark

                Author and article information

                Journal
                20 July 2018
                Article
                1807.07804
                12827c9f-c2fe-4943-956e-7d1c83b141a3

                http://creativecommons.org/licenses/by/4.0/

                History
                Custom metadata
                9 pages, 10 figures
                physics.plasm-ph

                Plasma physics
                Plasma physics

                Comments

                Comment on this article