4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery

      , ,
      ILAR Journal
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.

          Injury reproducibility is an important characteristic of experimental models of spinal cord injuries (SCI) because it limits the variability in locomotor and anatomical outcome measures. Recently, a more sensitive locomotor rating scale, the Basso, Beattie, and Bresnahan scale (BBB), was developed but had not been tested on rats with severe SCI complete transection. Rats had a 10-g rod dropped from heights of 6.25, 12.5, 25, and 50 mm onto the exposed cord at Tl 0 using the NYU device. A subset of rats with 25 and 50 mm SCI had subsequent spinal cord transection (SCI + TX) and were compared to rats with transection only (TX) in order to ascertain the dependence of recovery on descending systems. After 7-9 weeks of locomotor testing, the percentage of white matter measured from myelin-stained cross sections through the lesion center was significantly different between all the groups with the exception of 12.5 vs 25 mm and 25 vs 50 mm groups. Locomotor recovery was greatest for the 6.25-mm group and least for the 50-mm group and was correlated positively to the amount of tissue sparing at the lesion center (p 0.05). Thus, spared descending systems appear to modify segmental systems which produce greater behavioral improvements than isolated cord systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cellular inflammatory response in human spinal cords after injury.

            Spinal cord injury (SCI) provokes an inflammatory response that generates substantial secondary damage within the cord but also may contribute to its repair. Anti-inflammatory treatment of human SCI and its timing must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and then decrease in number, and the nature of their actions. Using post-mortem spinal cords, we evaluated the time course and distribution of pathological change, infiltrating neutrophils, monocytes/macrophages and lymphocytes, and microglial activation in injured spinal cords from patients who were 'dead at the scene' or who survived for intervals up to 1 year after SCI. SCI caused zones of pathological change, including areas of inflammation and necrosis in the acute cases, and cystic cavities with longer survival (Zone 1), mantles of less severe change, including axonal swellings, inflammation and Wallerian degeneration (Zone 2) and histologically intact areas (Zone 3). Zone 1 areas increased in size with time after injury whereas the overall injury (size of the Zones 1 and 2 combined) remained relatively constant from the time (1-3 days) when damage was first visible. The distribution of inflammatory cells correlated well with the location of Zone 1, and sometimes of Zone 2. Neutrophils, visualized by their expression of human neutrophil alpha-defensins (defensin), entered the spinal cord by haemorrhage or extravasation, were most numerous 1-3 days after SCI, and were detectable for up to 10 days after SCI. Significant numbers of activated CD68-immunoreactive ramified microglia and a few monocytes/macrophages were in injured tissue within 1-3 days of SCI. Activated microglia, a few monocytes/macrophages and numerous phagocytic macrophages were present for weeks to months after SCI. A few CD8(+) lymphocytes were in the injured cords throughout the sampling intervals. Expression by the inflammatory cells of the oxidative enzymes myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox)), and of the pro-inflammatory matrix metalloproteinase (MMP)-9, was analysed to determine their potential to cause oxidative and proteolytic damage. Oxidative activity, inferred from MPO and gp91(phox) immunoreactivity, was primarily associated with neutrophils and activated microglia. Phagocytic macrophages had weak or no expression of MPO or gp91(phox). Only neutrophils expressed MMP-9. These data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory 'neuroprotective' strategies should be directed at preventing early neutrophil influx and modifying microglial activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration.

              Following an initial impact after spinal cord injury (SCI), there is a cascade of downstream events termed 'secondary injury', which culminate in progressive degenerative events in the spinal cord. These secondary injury mechanisms include, but are not limited to, ischemia, inflammation, free radical-induced cell death, glutamate excitotoxicity, cytoskeletal degradation and induction of extrinsic and intrinsic apoptotic pathways. There is emerging evidence that glutamate excitotoxicity plays a key role not only in neuronal cell death but also in delayed posttraumatic spinal cord white matter degeneration. Importantly however, the differences in cellular composition and expression of specific types of glutamate receptors in grey versus white matter require a compartmentalized approach to understand the mechanisms of secondary injury after SCI. This review examines mechanisms of secondary white matter injury with particular emphasis on glutamate excitotoxicity and the potential link of this mechanism to apoptosis. Recent studies have provided new insights into the mechanisms of glutamate release and its potential targets, as well as the downstream pathways associated with glutamate receptor activation in specific types of cells. Evidence from molecular and functional expression of glutamatergic AMPA receptors in white matter glia (and possibly axons), the protective effects of AMPA/kainate antagonists in posttraumatic white matter axonal function, and the vulnerability of oligodendrocytes to excitotoxic cell death suggest that glutamate excitotoxicity is associated with oligodendrocyte apoptosis. The latter mechanism appears key to glutamatergic white matter degeneration after SCI and may represent an attractive therapeutic target.
                Bookmark

                Author and article information

                Journal
                ILAR Journal
                ILAR Journal
                Oxford University Press (OUP)
                1084-2020
                January 01 2007
                January 01 2007
                : 48
                : 4
                : 385-395
                Article
                10.1093/ilar.48.4.385
                12b605a8-d67e-4521-8145-78842dd7734f
                © 2007
                History

                Comments

                Comment on this article