3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spotlight on the Gut Microbiome in Menopause: Current Insights

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiome is an important contributor to human health, shaped by many endogenous and exogenous factors. The gut microbiome displays sexual dimorphism, suggesting influence of sex hormones, and also has been shown to change with aging. Yet, little is known regarding the influence of menopause – a pivotal event of reproductive aging in women – on the gut microbiome. Here, we summarize what is known regarding the interrelationships of female sex hormones and the gut microbiome, and review the available literature on menopause, female sex hormones, and the gut microbiome in humans. Taken together, research suggests that menopause is associated with lower gut microbiome diversity and a shift toward greater similarity to the male gut microbiome, however more research is needed in large study populations to identify replicable patterns in taxa impacted by menopause. Many gaps in knowledge remain, including the role the gut microbiome may play in menopause-related disease risks, and whether menopausal hormone therapy modifies menopause-related change in the gut microbiome. Given the modifiable nature of the gut microbiome, better understanding of its role in menopause-related health will be critical to identify novel opportunities for improvement of peri- and post-menopausal health and well-being.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structure, Function and Diversity of the Healthy Human Microbiome

          Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gut microbiome viewed across age and geography

            Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota in human metabolic health and disease

              Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
                Bookmark

                Author and article information

                Journal
                Int J Womens Health
                Int J Womens Health
                ijwh
                International Journal of Women's Health
                Dove
                1179-1411
                10 August 2022
                2022
                : 14
                : 1059-1072
                Affiliations
                [1 ]Department of Epidemiology and Population Health, Albert Einstein College of Medicine , Bronx, NY, USA
                [2 ]Department of Obstetrics and Gynecology, University of Colorado School of Medicine , Aurora, CO, USA
                [3 ]Public Health Sciences Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
                Author notes
                Correspondence: Brandilyn A Peters, Department of Epidemiology and Population Health, Albert Einstein College of Medicine , 1300 Morris Park Avenue, #1315AB, Bronx, NY, 10461, USA, Tel +1-718-430-3281, Email Brandilyn.Peterssamuelson@einsteinmed.org
                Article
                340491
                10.2147/IJWH.S340491
                9379122
                35983178
                139cffff-c392-4cc9-9d45-8ed2843a214f
                © 2022 Peters et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 26 April 2022
                : 05 August 2022
                Page count
                Figures: 2, Tables: 3, References: 89, Pages: 14
                Categories
                Review

                Obstetrics & Gynecology
                menopause,gut microbiome,estrobolome,microbial translocation,estrogen,progesterone

                Comments

                Comment on this article