Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antitumor Agents Based on Metal–Organic Frameworks

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: not found
          • Article: not found

          Nanoparticles in photodynamic therapy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.

            In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy.

              Metal-organic frameworks (MOFs)-an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers-have attracted increasing attention in recent years. The superior properties of MOFs, such as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, make them promising candidates as drug delivery hosts. Furthermore, scientists have made remarkable achievements in the field of nanomedical applications of MOFs, owing to their facile synthesis on the nanoscale and alternative functionalization via inclusion and surface chemistry. A brief introduction to the applications of MOFs in controlled drug/cargo delivery and cancer therapy that have been reported in recent years is provided here.
                Bookmark

                Author and article information

                Contributors
                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                1433-7851
                1521-3773
                July 26 2021
                March 23 2021
                July 26 2021
                : 60
                : 31
                : 16763-16776
                Affiliations
                [1 ]College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
                [2 ]Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
                Article
                10.1002/anie.202102574
                33686725
                13e41030-b5ae-4d7b-935a-5e84d3eba5b1
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article