12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survival of Radioresistant Bacteria on Europa’s Surface after Pulse Ejection of Subsurface Ocean Water

      , , , , ,
      Geosciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We briefly present preliminary results of our study of the radioresistant bacteria in a low temperature and pressure and high-radiation environment and hypothesize the ability of microorganisms to survive extraterrestrial high-radiation environments, such as the icy surface of Jupiter’s moon, Europa. In this study, samples containing a strain of Deinococcus radiodurans VKM B-1422T embedded into a simulated version of Europa’s ice were put under extreme environmental (−130 °C, 0.01 mbar) and radiation conditions using a specially designed experimental vacuum chamber. The samples were irradiated with 5, 10, 50, and 100 kGy doses and subsequently studied for residual viable cells. We estimate the limit of the accumulated dose that viable cells in those conditions could withstand at 50 kGy. Combining our numerical modelling of the accumulated dose in ice with observations of water eruption events on Europa, we hypothesize that in the case of such events, it is possible that putative extraterrestrial organisms might retain viability in a dormant state for up to 10,000 years, and could be sampled and studied by future probe missions.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

          A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Possible ecosystems and the search for life on Europa.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Composition and stability of salts on the surface of Europa and their oceanic origin

                Bookmark

                Author and article information

                Journal
                GBSEDA
                Geosciences
                Geosciences
                MDPI AG
                2076-3263
                January 2019
                December 25 2018
                : 9
                : 1
                : 9
                Article
                10.3390/geosciences9010009
                13e855df-71c5-42a2-8fae-96d4c9f5cf0b
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article