Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An early mechanical coupling of planktonic bacteria in dilute suspensions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is generally accepted that planktonic bacteria in dilute suspensions are not mechanically coupled and do not show correlated motion. The mechanical coupling of cells is a trait that develops upon transition into a biofilm, a microbial community of self-aggregated bacterial cells. Here we employ optical tweezers to show that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion. The strength of the coupling increases with the growth of liquid bacterial culture. The matrix responsible for the mechanical coupling is composed of cell debris and extracellular polymer material. The fragile network connecting cells behaves as viscoelastic liquid of entangled extracellular polymers. Our findings point to physical connections between bacteria in dilute bacterial suspensions that may provide a mechanistic framework for understanding of biofilm formation, osmotic flow of nutrients, diffusion of signal molecules in quorum sensing, or different efficacy of antibiotic treatments at low and high bacterial densities.

          Abstract

          Planktonic bacteria are untethered to surfaces or to each other, and thus are expected to move independently when at low cell densities. Here Sretenovic et al. show, using optical tweezers, that bacteria in dilute suspensions are mechanically coupled and show long-range correlated motion.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biofilms.

          Direct observations have clearly shown that biofilm bacteria predominate, numerically and metabolically, in virtually all nutrient-sufficient ecosystems. Therefore, these sessile organisms predominate in most of the environmental, industrial, and medical problems and processes of interest to microbiologists. If biofilm bacteria were simply planktonic cells that had adhered to a surface, this revelation would be unimportant, but they are demonstrably and profoundly different. We first noted that biofilm cells are at least 500 times more resistant to antibacterial agents. Now we have discovered that adhesion triggers the expression of a sigma factor that derepresses a large number of genes so that biofilm cells are clearly phenotypically distinct from their planktonic counterparts. Each biofilm bacterium lives in a customized microniche in a complex microbial community that has primitive homeostasis, a primitive circulatory system, and metabolic cooperativity, and each of these sessile cells reacts to its special environment so that it differs fundamentally from a planktonic cell of the same species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fruiting body formation by Bacillus subtilis.

            Spore formation by the bacterium Bacillus subtilis has long been studied as a model for cellular differentiation, but predominantly as a single cell. When analyzed within the context of highly structured, surface-associated communities (biofilms), spore formation was discovered to have heretofore unsuspected spatial organization. Initially, motile cells differentiated into aligned chains of attached cells that eventually produced aerial structures, or fruiting bodies, that served as preferential sites for sporulation. Fruiting body formation depended on regulatory genes required early in sporulation and on genes evidently needed for exopolysaccharide and surfactin production. The formation of aerial structures was robust in natural isolates but not in laboratory strains, an indication that multicellularity has been lost during domestication of B. subtilis. Other microbial differentiation processes long thought to involve only single cells could display the spatial organization characteristic of multicellular organisms when studied with recent natural isolates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

              Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.
                Bookmark

                Author and article information

                Contributors
                david.stopar@bf.uni-lj.si
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                9 August 2017
                9 August 2017
                2017
                : 8
                : 213
                Affiliations
                [1 ]ISNI 0000 0001 0721 6013, GRID grid.8954.0, Biotechnical Faculty, , University of Ljubljana, ; Vecna pot 111, Ljubljana, 1000 Slovenia
                [2 ]ISNI 0000 0001 0721 6013, GRID grid.8954.0, Medical Faculty, Institute of Biophysics, , University of Ljubljana, ; Vrazov trg 2, Ljubljana, 1000 Slovenia
                [3 ]ISNI 0000 0001 0721 6013, GRID grid.8954.0, Faculty of Mathematics and Physics, , University of Ljubljana, ; Jadranska 19, Ljubljana, 1000 Slovenia
                [4 ]Aresis Ltd., Ulica Franca Mlakarja 1a, Ljubljana, 1000 Slovenia
                Article
                295
                10.1038/s41467-017-00295-z
                5548916
                28790301
                1412a064-b9f6-4c51-9a5f-c8ade0f5bfa5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 November 2016
                : 19 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article