1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA-based nanomaterials are gaining popularity as uniform and programmable bioengineering tools as a result of recent solutions to their weak stability under biological conditions. The DNA nanotechnology platform uniquely allows decoupling of engineering parameters to comprehensively study the effect of each upon cellular encounter. We here present a systematic analysis of the effect of surface parameters of DNA-based nanoparticles on uptake in three different cell models: tumor cells, macrophages, and dendritic cells. The influence of surface charge, stabilizing coating, fluorophore types, functionalization technique, and particle concentration employed is found to cause significant differences in material uptake among these cell types. We therefore provide new insights into the large variance in cell type-specific uptake, highlighting the necessity of proper engineering and careful assay development when DNA-based materials are used as tools in bioengineering and as future nanotherapeutic agents.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering precision nanoparticles for drug delivery

          In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular uptake of nanoparticles: journey inside the cell

            Cellular association and trafficking of nanoscale materials enables us to both understand and exploit context-dependent phenomena in various disease states, their pathogenesis, and potential therapeutic approaches. Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell–cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano–bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle Uptake: The Phagocyte Problem.

              Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
                Bookmark

                Author and article information

                Journal
                Biomacromolecules
                Biomacromolecules
                bm
                bomaf6
                Biomacromolecules
                American Chemical Society
                1525-7797
                1526-4602
                31 May 2022
                13 June 2022
                : 23
                : 6
                : 2586-2594
                Affiliations
                [1]Programmable Biomaterials Laboratory, Institute of Materials/Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne , Lausanne 1015, Switzerland
                Author notes
                Author information
                https://orcid.org/0000-0003-3244-9059
                https://orcid.org/0000-0002-7603-4018
                Article
                10.1021/acs.biomac.2c00282
                9198982
                35641881
                15794d73-a7d4-486d-9caa-9fff5e40def6
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 04 March 2022
                : 20 May 2022
                Funding
                Funded by: H2020 European Research Council, doi 10.13039/100010663;
                Award ID: 948334
                Funded by: Fondation Pierre Mercier pour la Science, doi NA;
                Award ID: NA
                Categories
                Article
                Custom metadata
                bm2c00282
                bm2c00282

                Biochemistry
                Biochemistry

                Comments

                Comment on this article