8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrinsic connectivity networks in posterior cortical atrophy: A role for the pulvinar?

      research-article
      * , 1 , , , , 2 , , , , ,
      NeuroImage : Clinical
      Elsevier
      PCA, Posterior cortical atrophy, AD, Alzheimer's disease, DMN, default mode network, SN, salience network, MMSE, Mini Mental State Exam, CVLT, California Verbal Learning Test, aBNT, abbreviated form of the Boston Naming Test, IRI, Interpersonal Reactivity Index, GDS, Geriatric Depression Scale, MPRAGE, magnetization-prepared rapid gradient echo, VBM, voxel-based morphometry, Posterior cortical atrophy, Pulvinar, Alzheimer's disease, Functional connectivity, Default mode network, Salience network

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Posterior cortical atrophy (PCA) is a clinical variant of Alzheimer's disease (AD) that presents with progressive visuospatial symptoms. While amnestic AD is characterized by disrupted default mode network (DMN) connectivity with corresponding increases in salience network (SN) connectivity, a visuospatial network appears to be disrupted early in PCA. Based on PCA patients' clinical features, we hypothesized that, in addition to early decreased integrity within the visuospatial network, patients with PCA would show increases in SN connectivity despite relative preservation of DMN. As the lateral pulvinar nucleus of the thalamus has direct anatomical connections with striate and extrastriate cortex and DMN, and the medial pulvinar is anatomically interconnected with SN, we further hypothesized that lateral and medial pulvinar nuclei might be implicated in intrinsic connectivity changes in PCA.

          Methods

          26 patients with PCA and 64 matched controls were recruited through UCSF Memory and Aging Center research programs. Each completed a standardized neuropsychological battery, structural MRI, and task-free fMRI. Seed-based functional correlations were used to probe networks of interest, including those seeded by the medial and lateral pulvinar thalamic nuclei, across the whole brain, and functional data analyses were adjusted for brain atrophy.

          Results

          Patients with PCA showed disproportionate deficits in the visuospatial domain; they also showed preserved social sensitivity and endorsed more depressive symptoms than HCs. PCA patients had significant parietooccipital atrophy accompanied by widespread connectivity decreases within the visuospatial network, enhanced connectivity between some structures in SN, and enhanced connectivity between key nodes of the DMN compared to controls. Increased SN connectivity correlated with a measure of social sensitivity, and increased DMN connectivity correlated with short-term memory performance. Medial pulvinar connectivity increases in PCA were topographically similar to SN (anterior insula) connectivity increases, while lateral pulvinar connectivity increases were similar to DMN (posterior cingulate) connectivity increases.

          Conclusions

          PCA is characterized by preserved to heightened connectivity in the SN and DMN despite decreased visuospatial network connectivity. The spatial similarity of medial and lateral pulvinar connectivity changes to those seen in the SN and DMN suggests a role for the pulvinar in intrinsic connectivity network changes in PCA.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Development and validation of a geriatric depression screening scale: a preliminary report.

          A new Geriatric Depression Scale (GDS) designed specifically for rating depression in the elderly was tested for reliability and validity and compared with the Hamilton Rating Scale for Depression (HRS-D) and the Zung Self-Rating Depression Scale (SDS). In constructing the GDS a 100-item questionnaire was administered to normal and severely depressed subjects. The 30 questions most highly correlated with the total scores were then selected and readministered to new groups of elderly subjects. These subjects were classified as normal, mildly depressed or severely depressed on the basis of Research Diagnostic Criteria (RDC) for depression. The GDS, HRS-D and SDS were all found to be internally consistent measures, and each of the scales was correlated with the subject's number of RDC symptoms. However, the GDS and the HRS-D were significantly better correlated with RDC symptoms than was the SDS. The authors suggest that the GDS represents a reliable and valid self-rating depression screening scale for elderly populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rich-club organization of the human connectome.

            The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.

              Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuroimage Clin
                Neuroimage Clin
                NeuroImage : Clinical
                Elsevier
                2213-1582
                03 December 2018
                2019
                03 December 2018
                : 21
                : 101628
                Affiliations
                Memory and Aging Center, University of California, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
                Author notes
                [* ]Corresponding author. cfrederi@ 123456stanford.edu
                [1]

                Present Address: Stanford Center for Memory Disorders, 213 Quarry Road, Palo Alto, CA 94305, USA.

                [2]

                Present Address: VU University Medical Center, Department of Neurology and Alzheimer Center, Amsterdam Neuroscience, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.

                Article
                S2213-1582(18)30376-0 101628
                10.1016/j.nicl.2018.101628
                6411779
                30528957
                15918c4d-feb0-4b83-9ba3-2cb07c18b7d1
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 August 2018
                : 26 November 2018
                : 1 December 2018
                Categories
                Article

                pca, posterior cortical atrophy,ad, alzheimer's disease,dmn, default mode network,sn, salience network,mmse, mini mental state exam,cvlt, california verbal learning test,abnt, abbreviated form of the boston naming test,iri, interpersonal reactivity index,gds, geriatric depression scale,mprage, magnetization-prepared rapid gradient echo,vbm, voxel-based morphometry,posterior cortical atrophy,pulvinar,alzheimer's disease,functional connectivity,default mode network,salience network

                Comments

                Comment on this article