59
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden a

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The highest annual incidence of human tick-borne encephalitis (TBE) in Sweden ever recorded by the Swedish Institute for Communicable Disease Control (SMI) occurred last year, 2011. The number of TBE cases recorded during 2012 up to 6th August 2012 indicates that the incidence for 2012 could exceed that of 2011. In this review of the ecology and epidemiology of TBE in Sweden our main aim is to analyse the possible reasons behind the gradually increasing incidence of human TBE during the last 20 years. The main TBE virus (TBEV) vector to humans in Sweden is the nymphal stage of the common tick Ixodes ricinus. The main mode of transmission and maintenance of TBEV in the tick population is considered to be when infective nymphs co-feed with uninfected but infectible larvae on rodents. In most locations the roe deer, Capreolus capreolus is the main host for the reproducing adult I. ricinus ticks. The high number of roe deer for more than three decades has resulted in a very large tick population. Deer numbers have, however, gradually declined from the early 1990s to the present. This decline in roe deer numbers most likely made the populations of small rodents, which are reservoir-competent for TBEV, gradually more important as hosts for the immature ticks. Consequently, the abundance of TBEV-infected ticks has increased. Two harsh winters in 2009–2011 caused a more abrupt decline in roe deer numbers. This likely forced a substantial proportion of the “host-seeking” ticks to feed on bank voles ( Myodes glareolus), which at that time suddenly had become very numerous, rather than on roe deer. Thus, the bank vole population peak in 2010 most likely caused many tick larvae to feed on reservoir-competent rodents. This presumably resulted in increased transmission of TBEV among ticks and therefore increased the density of infected ticks the following year. The unusually warm, humid weather and the prolonged vegetation period in 2011 permitted nymphs and adult ticks to quest for hosts nearly all days of that year. These weather conditions stimulated many people to spend time outdoors in areas where they were at risk of being attacked by infective nymphs. This resulted in at least 284 human cases of overt TBE. The tick season of 2012 also started early with an exceptionally warm March. The abundance of TBEV-infective “hungry” ticks was presumably still relatively high. Precipitation during June and July was rich and will lead to a “good mushroom season”. These factors together are likely to result in a TBE incidence of 2012 similar to or higher than that of 2011.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Tick-borne encephalitis.

          We review the epidemiological and clinical characteristics of tick-borne encephalitis, and summarise biological and virological aspects that are important for understanding the life-cycle and transmission of the virus. Tick-borne encephalitis virus is a flavivirus that is transmitted by Ixodes spp ticks in a vast area from western Europe to the eastern coast of Japan. Tick-borne encephalitis causes acute meningoencephalitis with or without myelitis. Morbidity is age dependent, and is highest in adults of whom half develop encephalitis. A third of patients have longlasting sequelae, frequently with cognitive dysfunction and substantial impairment in quality of life. The disease arises in patchy endemic foci in Europe, with climatic and ecological conditions suitable for circulation of the virus. Climate change and leisure habits expose more people to tick-bites and have contributed to the increase in number of cases despite availability of effective vaccines. The serological diagnosis is usually straightforward. No specific treatment for the disease exists, and immunisation is the main preventive measure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

            Background Ixodes ricinus is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that Ixodes ricinus ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study. Methods A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present. Results Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, I. ricinus has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden. Conclusions The results suggest that I. ricinus has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region I. ricinus is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (Capreolus capreolus) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of I. ricinus and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of I. ricinus. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly C. capreolus and Dama dama, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (Vulpes vulpes) and lynx (Lynx lynx), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission.

              Rodents play a significant role in enzootic cycles of tick-borne pathogens, notably, in the northern hemisphere, tick-borne encephalitis virus and Lyme borreliosis spirochaetes. The relative numbers of nymphal and larval ticks feeding on rodents are crucial variables in determining the probability of rodent infection and the degree of amplification of infection prevalence in the tick population. Manipulation of the microclimate within quasinatural experimental arenas revealed that under increasingly dry conditions the numbers of unfed nymphal Ixodes ricinus L. questing in upper layers of the herbage decreased, whereas the rate of fat use and the numbers of nymphs feeding on small rodents, both increased. This is consistent with nymphs descending to the moist lower vegetation layers for water replenishment, where they would come into contact with small hosts. Very few larvae quested or fed on rodents under the dry conditions, but many more did so once the humidity increased, suggesting that larvae escape desiccation by becoming quiescent. The ratio of larvae to nymphs feeding on rodents thus increases with increasing humidity, contributing to the seasonal and geographical variation in disease transmission dynamics.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2012
                31 August 2012
                : 5
                : 184
                Affiliations
                [1 ]Medical Entomology Unit, Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d, Uppsala SE-752 36, Sweden
                [2 ]Department for Analysis and Prevention, Swedish Institute for Communicable Disease Control, SMI, Stockholm, Sweden
                [3 ]Department of Infectious Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
                Article
                1756-3305-5-184
                10.1186/1756-3305-5-184
                3439267
                22937961
                15b1e65d-6d28-4b4a-be63-577827eeb2ad
                Copyright ©2012 Jaenson et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 August 2012
                : 17 August 2012
                Categories
                Review

                Parasitology
                sweden,roe deer,capreolus capreolus,ixodes ricinus,tbe epidemiology,vulpes vulpes,myodes glareolus,bank vole,tick-borne encephalitis virus

                Comments

                Comment on this article