3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Naphthoquinones isolated from Eleutherine plicata herb: in vitro antimalarial activity and molecular modeling to investigate their binding modes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Density-functional thermochemistry. III. The role of exact exchange

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural Products as Sources of New Drugs from 1981 to 2014.

            This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than "S" (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore it is considered that this area of natural product research should be expanded significantly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synchronization of Plasmodium falciparum erythrocytic stages in culture.

              Synchronous development of the erythrocytic stages of a human malaria parasite, Plasmodium falciparum, in culture was accomplished by suspending cultured parasites in 5% D-sorbitol and subsequent reintroduction into culture. Immediately after sorbitol treatment, cultures consisted mainly of single and multiple ring-form infections. At the same time, varying degrees of lysis of erythrocytes infected with the more mature stages of the parasite was evident. Approximately 95% of the parasites were in the ring stage of development at 48 and 96 hr after sorbitol treatment-likewise, a high percentage of trophozoite and schizont stages was observed at 24, 72, and 120 hr. D-Mannitol produced similar, selective, lytic effects.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Medicinal Chemistry Research
                Med Chem Res
                Springer Science and Business Media LLC
                1054-2523
                1554-8120
                March 2020
                January 18 2020
                March 2020
                : 29
                : 3
                : 487-494
                Article
                10.1007/s00044-019-02498-z
                15db7fe4-f274-4cd6-bd43-7cc47cab5b56
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article