32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zebrafish as a Model Organism for the Development of Drugs for Skin Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin cancer, which includes melanoma and squamous cell carcinoma, represents the most common type of cutaneous malignancy worldwide, and its incidence is expected to rise in the near future. This condition derives from acquired genetic dysregulation of signaling pathways involved in the proliferation and apoptosis of skin cells. The development of animal models has allowed a better understanding of these pathomechanisms, with the possibility of carrying out toxicological screening and drug development. In particular, the zebrafish ( Danio rerio) has been established as one of the most important model organisms for cancer research. This model is particularly suitable for live cell imaging and high-throughput drug screening in a large-scale fashion. Thanks to the recent advances in genome editing, such as the clustered regularly-interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) methodologies, the mechanisms associated with cancer development and progression, as well as drug resistance can be investigated and comprehended. With these unique tools, the zebrafish represents a powerful platform for skin cancer research in the development of target therapies. Here, we will review the advantages of using the zebrafish model for drug discovery and toxicological and phenotypical screening. We will focus in detail on the most recent progress in the field of zebrafish model generation for the study of melanoma and squamous cell carcinoma (SCC), including cancer cell injection and transgenic animal development. Moreover, we will report the latest compounds and small molecules under investigation in melanoma zebrafish models.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

            Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.

              Systematic analyses of cancer genomes promise to unveil patterns of genetic alterations linked to the genesis and spread of human cancers. High-density single-nucleotide polymorphism (SNP) arrays enable detailed and genome-wide identification of both loss-of-heterozygosity events and copy-number alterations in cancer. Here, by integrating SNP array-based genetic maps with gene expression signatures derived from NCI60 cell lines, we identified the melanocyte master regulator MITF (microphthalmia-associated transcription factor) as the target of a novel melanoma amplification. We found that MITF amplification was more prevalent in metastatic disease and correlated with decreased overall patient survival. BRAF mutation and p16 inactivation accompanied MITF amplification in melanoma cell lines. Ectopic MITF expression in conjunction with the BRAF(V600E) mutant transformed primary human melanocytes, and thus MITF can function as a melanoma oncogene. Reduction of MITF activity sensitizes melanoma cells to chemotherapeutic agents. Targeting MITF in combination with BRAF or cyclin-dependent kinase inhibitors may offer a rational therapeutic avenue into melanoma, a highly chemotherapy-resistant neoplasm. Together, these data suggest that MITF represents a distinct class of 'lineage survival' or 'lineage addiction' oncogenes required for both tissue-specific cancer development and tumour progression.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 July 2017
                July 2017
                : 18
                : 7
                : 1550
                Affiliations
                [1 ]Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 14114 Tehran, Iran; fatemeh.bootorabi@ 123456gmail.com
                [2 ]Department of Aquaculture, Babol Branch, Islamic Azad University, 47134 Babol, Iran; hd_manuchehri@ 123456yahoo.com (H.M.); rech76ir@ 123456gmail.com (R.C.)
                [3 ]Faculty of Medicine and Life Sciences, University of Tampere, 33014 Tampere, Finland; harlan.barker@ 123456uta.fi
                [4 ]Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy; elisabetta.palazzo1@ 123456gmail.com (E.P.); annalisax85@ 123456alice.it (A.S.); carlo.pincelli@ 123456unimore.it (C.P.)
                [5 ]Faculty of Medicine and Life Sciences, University of Tampere, Oral and Maxillofacial Unit, Tampere University Hospital, 33014 Tampere, Finland; mataleena.parikka@ 123456uta.fi
                Author notes
                [* ]Correspondence: ashok.aspatwar@ 123456staff.uta.fi ; Tel.: +358-465962117
                Author information
                https://orcid.org/0000-0002-0812-5524
                https://orcid.org/0000-0002-6938-7835
                Article
                ijms-18-01550
                10.3390/ijms18071550
                5536038
                28718799
                15df2068-33a3-44ea-ad18-8d0845628e45
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 April 2017
                : 11 July 2017
                Categories
                Review

                Molecular biology
                melanoma,squamous cell carcinoma,inhibitor screening,transgenic zebrafish,skin cancer,drug development

                Comments

                Comment on this article