2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential for urban agriculture to support accessible and impactful undergraduate biology education

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Active learning in STEM education is essential for engaging the diverse pool of scholars needed to address pressing environmental and social challenges. However, active learning formats are difficult to scale and their incorporation into STEM teaching at U.S. universities varies widely. Here, we argue that urban agriculture as a theme can significantly increase active learning in undergraduate biology education by facilitating outdoor fieldwork and community‐engaged education. We begin by reviewing benefits of field courses and community engagement activities for undergraduate biology and discuss constraints to their broader implementation. We then describe how urban agriculture can connect biology concepts to pressing global changes, provide field research opportunities, and connect students to communities. Next, we assess the extent to which urban agriculture and related themes have already been incorporated into biology‐related programs in the United States using a review of major programs, reports on how campus gardens are used, and case studies from five higher education institutions (HEIs) engaging with this issue. We found that while field experiences are fairly common in major biology programs, community engagement opportunities are rare, and urban agriculture is almost nonexistent in course descriptions. We also found that many U.S. HEIs have campus gardens, but evidence suggests that they are rarely used in biology courses. Finally, case studies of five HEIs highlight innovative programming but also significant opportunities for further implementation. Together, our results suggest that urban agriculture is rarely incorporated into undergraduate biology in the United States, but there are significant prospects for doing so. We end with recommendations for integrating urban agriculture into undergraduate biology, including the development of campus gardens, research programs, community engagement partnerships, and collaborative networks. If done with care, this integration could help students make community contributions within required coursework, and help instructors feel a greater sense of accomplishment in an era of uncertainty.

          Abstract

          We argue that urban agriculture is well suited as a theme for undergraduate biology education because it will facilitate the incorporation of outdoor fieldwork and community‐engaged education into the curriculum. In the manuscript, we review potential educational benefits of field courses and community engagement activities for undergraduate biology and discuss constraints to their broader implementation. We also assess the extent to which urban agriculture and related themes have already been incorporated into Biology‐related programs and make recommendations for incorporating urban agriculture into biology curricula.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Solutions for a cultivated planet.

          Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Active learning increases student performance in science, engineering, and mathematics.

            To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Meta-Analysis of Global Urban Land Expansion

              The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely.
                Bookmark

                Author and article information

                Contributors
                adkay@stthomas.edu
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                14 March 2022
                March 2022
                : 12
                : 3 ( doiID: 10.1002/ece3.v12.3 )
                : e8721
                Affiliations
                [ 1 ] Biology Department University of St. Thomas St. Paul Minnesota USA
                [ 2 ] ringgold 5783; Ecology and Evolutionary Biology Department Tulane University New Orleans Louisiana USA
                [ 3 ] ringgold 7119; Biology Department University of San Diego San Diego California USA
                [ 4 ] ringgold 8678; Office of the Provost Rollins College Winter Park Florida USA
                [ 5 ] ringgold 8678; Social Impact Hub Rollins College Winter Park Florida USA
                [ 6 ] Infinite Zion Farms Winter Park Florida USA
                [ 7 ] ringgold 33065; Salish Kootenai College Pablo Montana USA
                [ 8 ] ringgold 33065; Flathead Valley Community College Kalispell Montana USA
                Author notes
                [*] [* ] Correspondence

                Adam D. Kay, Biology Department, University of St. Thomas, St. Paul, MN 55105, USA.

                Email: adkay@ 123456stthomas.edu

                Author information
                https://orcid.org/0000-0001-6667-7645
                Article
                ECE38721
                10.1002/ece3.8721
                8928874
                15ede129-a684-45ca-9806-e4b60b191f72
                © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 February 2022
                : 28 November 2021
                : 22 February 2022
                Page count
                Figures: 4, Tables: 2, Pages: 13, Words: 10413
                Funding
                Funded by: National Science Foundation Undergraduate Biology Education
                Award ID: DEB‐1827154
                Award ID: DEB‐2018837
                Categories
                Academic Practice in Ecology and Evolution
                Academic Practice in Ecology and Evolution
                Custom metadata
                2.0
                March 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.2 mode:remove_FC converted:15.03.2022

                Evolutionary Biology
                active learning,community engagement,field course,sustainability
                Evolutionary Biology
                active learning, community engagement, field course, sustainability

                Comments

                Comment on this article