3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning

      1 , 1
      Bioinformatics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation

          Protein–RNA interactions play essential roles in many biological processes, including pre-mRNA processing, post-transcriptional gene regulation and RNA degradation. Accurate identification of binding sites on RNA-binding proteins (RBPs) is important for functional annotation and site-directed mutagenesis. Experimental assays to sparse RBPs are precise and convincing but also costly and time consuming. Therefore, flexible and reliable computational methods are required to recognize RNA-binding residues.

          Results

          In this work, we propose PST-PRNA, a novel model for predicting RNA-binding sites (PRNA) based on protein surface topography (PST). Taking full advantage of the 3D structural information of protein, PST-PRNA creates representative topography images of the entire protein surface by mapping it onto a unit spherical surface. Four kinds of descriptors are encoded to represent residues on the surface. Then, the potential features are integrated and optimized by using deep learning models. We compile a comprehensive non-redundant RBP dataset to train and test PST-PRNA using 10-fold cross-validation. Numerous experiments demonstrate PST-PRNA learns successfully the latent structural information of protein surface. On the non-redundant dataset with sequence identity of 0.3, PST-PRNA achieves area under the receiver operating characteristic curves (AUC) value of 0.860 and Matthew’s correlation coefficient value of 0.420. Furthermore, we construct a completely independent test dataset for justification and comparison. PST-PRNA achieves AUC value of 0.913 on the independent dataset, which is superior to the other state-of-the-art methods.

          Availability and implementation

          The code and data are available at https://www.github.com/zpliulab/PST-PRNA. A web server is freely available at http://www.zpliulab.cn/PSTPRNA.

          Supplementary information

          Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

          S Altschul (1997)
          The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Protein Data Bank.

            The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CD-HIT: accelerated for clustering the next-generation sequencing data

              Summary: CD-HIT is a widely used program for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses. In response to the rapid increase in the amount of sequencing data produced by the next-generation sequencing technologies, we have developed a new CD-HIT program accelerated with a novel parallelization strategy and some other techniques to allow efficient clustering of such datasets. Our tests demonstrated very good speedup derived from the parallelization for up to ∼24 cores and a quasi-linear speedup for up to ∼8 cores. The enhanced CD-HIT is capable of handling very large datasets in much shorter time than previous versions. Availability: http://cd-hit.org. Contact: liwz@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioinformatics
                Oxford University Press (OUP)
                1367-4803
                1460-2059
                April 15 2022
                April 12 2022
                February 12 2022
                April 15 2022
                April 12 2022
                February 12 2022
                : 38
                : 8
                : 2162-2168
                Affiliations
                [1 ]Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
                Article
                10.1093/bioinformatics/btac078
                35150250
                16081b0f-9a3b-4329-8f97-94462699f545
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article