28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prospects for elimination of soil-transmitted helminths

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose of review

          Soil-transmitted helminths (STH) are endemic in 120 countries and are associated with substantial morbidity and loss of economic productivity. Although current WHO guidelines focus on morbidity control through mass drug administration (MDA), there is global interest in whether a strategy targeting disease elimination might be feasible in some settings. This review summarizes the prospects for switching from control to an elimination strategy.

          Recent findings

          STH control efforts have reduced the intensity of infections in targeted populations with associated reductions in morbidity. However, adults are not frequently targeted and remain important reservoirs for reinfection of treated children. Recent modeling suggests that transmission interruption may be possible through expanded community-wide delivery of MDA, the feasibility of which has been demonstrated by other programs. However, these models suggest that high levels of coverage and compliance must be achieved. Potential challenges include the risk of prematurely dismantling STH programs and the potential increased risk of antihelminthic resistance.

          Summary

          Elimination of STH may offer an opportunity to eliminate substantial STH-related morbidity while reducing resource needs of neglected tropical disease programs. Evidence from large community trials is needed to determine the feasibility of interrupting the transmission of STH in some geographic settings.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm.

          The three main soil-transmitted helminth infections, ascariasis, trichuriasis, and hookworm, are common clinical disorders in man. The gastrointestinal tract of a child living in poverty in a less developed country is likely to be parasitised with at least one, and in many cases all three soil-transmitted helminths, with resultant impairments in physical, intellectual, and cognitive development. The benzimidazole anthelmintics, mebendazole and albendazole, are commonly used to remove these infections. The use of these drugs is not limited to treatment of symptomatic soil-transmitted helminth infections, but also for large-scale prevention of morbidity in children living in endemic areas. As a result of data showing improvements in child health and education after deworming, and the burden of disease attributed to soil-transmitted helminths, the worldwide community is awakening to the importance of these infections. Concerns about the sustainability of periodic deworming with benzimidazole anthelmintics and the emergence of resistance have prompted efforts to develop and test new control tools.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The coverage and frequency of mass drug administration required to eliminate persistent transmission of soil-transmitted helminths

            A combination of methods, including mathematical model construction, demographic plus epidemiological data analysis and parameter estimation, are used to examine whether mass drug administration (MDA) alone can eliminate the transmission of soil-transmitted helminths (STHs). Numerical analyses suggest that in all but low transmission settings (as defined by the magnitude of the basic reproductive number, R 0), the treatment of pre-school-aged children (pre-SAC) and school-aged children (SAC) is unlikely to drive transmission to a level where the parasites cannot persist. High levels of coverage (defined as the fraction of an age group effectively treated) are required in pre-SAC, SAC and adults, if MDA is to drive the parasite below the breakpoint under which transmission is eliminated. Long-term solutions to controlling helminth infections lie in concomitantly improving the quality of the water supply, sanitation and hygiene (WASH). MDA, however, is a very cost-effective tool in long-term control given that most drugs are donated free by the pharmaceutical industry for poor regions of the world. WASH interventions, by lowering the basic reproductive number, can facilitate the ability of MDA to interrupt transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin, and school performance

              Background The World Health Organization (WHO) recommends treating all school children at regular intervals with deworming drugs in areas where helminth infection is common. As the intervention is often claimed to have important health, nutrition, and societal effects beyond the removal of worms, we critically evaluated the evidence on benefits. Objectives To summarize the effects of giving deworming drugs to children to treat soil-transmitted helminths on weight, haemoglobin, and cognition; and the evidence of impact on physical well-being, school attendance, school performance, and mortality. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (14 April 2015); Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library (2015, Issue 4); MEDLINE (2000 to 14 April 2015); EMBASE (2000 to 14 April 2015); LILACS (2000 to 14 April 2015); the metaRegister of Controlled Trials (mRCT); and reference lists, and registers of ongoing and completed trials up to 14 April 2015. Selection criteria We included randomized controlled trials (RCTs) and quasi-RCTs comparing deworming drugs for soil-transmitted helminths with placebo or no treatment in children aged 16 years or less, reporting on weight, haemoglobin, and formal tests of intellectual development. We also sought data on school attendance, school performance, and mortality. We included trials that combined health education with deworming programmes. Data collection and analysis At least two review authors independently assessed the trials, evaluated risk of bias, and extracted data. We analysed continuous data using the mean difference (MD) with 95% confidence intervals (CIs). Where data were missing, we contacted trial authors. We used outcomes at time of longest follow-up. The evidence quality was assessed using GRADE. This edition of the Cochrane Review adds the DEVTA trial from India, and draws on an independent analytical replication of a trial from Kenya. Main results We identified 45 trials, including nine cluster-RCTs, that met the inclusion criteria. One trial evaluating mortality included over one million children, and the remaining 44 trials included a total of 67,672 participants. Eight trials were in children known to be infected, and 37 trials were carried out in endemic areas, including areas of high (15 trials), moderate (12 trials), and low prevalence (10 trials). Treating children known to be infected Treating children known to be infected with a single dose of deworming drugs (selected by screening, or living in areas where all children are infected) may increase weight gain over the next one to six months (627 participants, five trials, low quality evidence). The effect size varied across trials from an additional 0.2 kg gain to 1.3 kg. There is currently insufficient evidence to know whether treatment has additional effects on haemoglobin (247 participants, two trials, very low quality evidence); school attendance (0 trials); cognitive functioning (103 participants, two trials, very low quality evidence), or physical well-being (280 participants, three trials, very low quality evidence). Community deworming programmes Treating all children living in endemic areas with a dose of deworming drugs probably has little or no effect on average weight gain (MD 0.04 kg less, 95% CI 0.11 kg less to 0.04 kg more; trials 2719 participants, seven trials, moderate quality evidence), even in settings with high prevalence of infection (290 participants, two trials). A single dose also probably has no effect on average haemoglobin (MD 0.06 g/dL, 95% CI -0.05 lower to 0.17 higher; 1005 participants, three trials, moderate quality evidence), or average cognition (1361 participants, two trials, low quality evidence). Similiarly, regularly treating all children in endemic areas with deworming drugs, given every three to six months, may have little or no effect on average weight gain (MD 0.08 kg, 95% CI 0.11 kg less to 0.27 kg more; 38,392 participants, 10 trials, low quality evidence). The effects were variable across trials; one trial from a low prevalence setting carried out in 1995 found an increase in weight, but nine trials carried out since then found no effect, including five from moderate and high prevalence areas. There is also reasonable evidence that regular treatment probably has no effect on average height (MD 0.02 cm higher, 95% CI 0.14 lower to 0.17 cm higher; 7057 participants, seven trials, moderate quality evidence); average haemoglobin (MD 0.02 g/dL lower; 95% CI 0.08 g/dL lower to 0.04 g/dL higher; 3595 participants, seven trials, low quality evidence); formal tests of cognition (32,486 participants, five trials, moderate quality evidence); exam performance (32,659 participants, two trials, moderate quality evidence); or mortality (1,005,135 participants, three trials, low quality evidence). There is very limited evidence assessing an effect on school attendance and the findings are inconsistent, and at risk of bias (mean attendance 2% higher, 95% CI 4% lower to 8% higher; 20,243 participants, two trials, very low quality evidence). In a sensitivity analysis that only included trials with adequate allocation concealment, there was no evidence of any effect for the main outcomes. Authors' conclusions Treating children known to have worm infection may have some nutritional benefits for the individual. However, in mass treatment of all children in endemic areas, there is now substantial evidence that this does not improve average nutritional status, haemoglobin, cognition, school performance, or survival. PLAIN LANGUAGE SUMMARY Deworming school children in developing countries In this Cochrane Review, Cochrane researchers examined the effects of deworming children in areas where intestinal worm infection is common. After searching for relevant trials up to April 2015, we included 44 trials with a total of 67,672 participants, and an additional trial of one million children. What is deworming and why might it be important Soil-transmitted worms, including roundworms, hookworms, and whipworms, are common in tropical and subtropical areas, and particularly affect children in low-income areas where there is inadequate sanitation. Heavy worm infection is associated with malnutrition, poor growth, and anaemia in children. The World Health Organization currently recommends that school children in endemic areas are regularly treated with drugs which kill these worms. The recommended drugs are effective at eliminating or greatly reducing worm infections, but the question remains whether doing so will reduce anaemia and improve growth, and consequently improve school attendance, school performance, and economic development, as has been claimed. What the research says In trials that treat only children known to be infected, deworming drugs may increase weight gain (low quality evidence), but we do not know if there is an effect on cognitive functioning or physical well-being (very low quality evidence). In trials treating all children living in an endemic area, deworming drugs have little or no effect on average weight gain (moderate quality evidence), haemoglobin (low quality evidence), or cognition (moderate quality evidence). Regular deworming treatment every three to six months may also have little or no effect on average weight gain (low quality evidence). The effects were variable across trials: one trial from 1995 in a low prevalence setting found an increase in weight, but nine trials carried out since then from moderate or high prevalence settings showed no effect. There is good evidence that regular treatment probably has no effect on average height (moderate quality evidence), haemoglobin (low quality evidence), formal tests of cognition (moderate quality evidence), or exam performance (moderate quality evidence). We do not know if there is an effect on school attendance (very low quality evidence). Authors conclusions Treating children known to have worm infection may improve weight gain but there is limited evidence of other benefits. For routine deworming of school children in endemic areas, there is quite substantial evidence that deworming programmes do not show benefit in terms of average nutritional status, haemoglobin, cognition, school performance, or death.
                Bookmark

                Author and article information

                Journal
                Curr Opin Infect Dis
                Curr Opin Infect Dis
                COID
                Current Opinion in Infectious Diseases
                Wolters Kluwer Health, Inc.
                0951-7375
                1473-6527
                October 2017
                2017
                : 30
                : 5
                : 482-488
                Affiliations
                [a ]DeWorm3, The Natural History Museum, London, UK
                [b ]Department of Global Health, University of Washington, Seattle, Washington, USA and
                [c ]Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research (LCNTDR), St. Mary’s Campus, Imperial College London, London, UK
                Author notes
                Correspondence to Judd L. Walson, Department of Global Health, University of Washington, Box 359931, 325 Ninth Avenue, Seattle, WA 98104, USA. Tel: +1 206 543 4278; e-mail: walson@ 123456uw.edu
                Article
                COID-30-05-482
                10.1097/QCO.0000000000000395
                7680933
                28700363
                161f96b8-58e7-45d4-9afd-5c8a16af730d
                © 2017 Wolters Kluwer Health, Inc. All rights reserved

                This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review

                disease elimination,soil-transmitted helminths,transmission interruption

                Comments

                Comment on this article