4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite

      , , , ,
      Cement and Concrete Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global Carbon Budget 2016

          Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC ), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), E FF was 9.3 ± 0.5 GtC yr −1 , E LUC 1.0 ± 0.5 GtC yr −1 , G ATM 4.5 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 3.1 ± 0.9 GtC yr −1 . For year 2015 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr −1 , showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr −1 that took place during 2006–2015. Also, for 2015, E LUC was 1.3 ± 0.5 GtC yr −1 , G ATM was 6.3 ± 0.2 GtC yr −1 , S OCEAN was 3.0 ± 0.5 GtC yr −1 , and S LAND was 1.9 ± 0.9 GtC yr −1 . G ATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller S LAND for that year. The global atmospheric CO 2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E FF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E FF in 2016, the growth rate in atmospheric CO 2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink ( S LAND ) in response to El Niño conditions of 2015–2016. From this projection of E FF and assumed constant E LUC for 2016, cumulative emissions of CO 2 will reach 565 ± 55 GtC (2075 ± 205 GtCO 2 ) for 1870–2016, about 75 % from E FF and 25 % from E LUC . This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_2016 ).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stable prenucleation calcium carbonate clusters.

            Calcium carbonate forms scales, geological deposits, biominerals, and ocean sediments. Huge amounts of carbon dioxide are retained as carbonate ions, and calcium ions represent a major contribution to water hardness. Despite its relevance, little is known about the precipitation mechanism of calcium carbonate, and specified complex crystal structures challenge the classical view on nucleation considering the formation of metastable ion clusters. We demonstrate that dissolved calcium carbonate in fact contains stable prenucleation ion clusters forming even in undersaturated solution. The cluster formation can be characterized by means of equilibrium thermodynamics, applying a multiple-binding model, which allows for structural preformation. Stable clusters are the relevant species in calcium carbonate nucleation. Such mechanisms may also be important for the crystallization of other minerals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

              The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.
                Bookmark

                Author and article information

                Journal
                Cement and Concrete Research
                Cement and Concrete Research
                Elsevier BV
                00088846
                September 2020
                September 2020
                : 135
                : 106116
                Article
                10.1016/j.cemconres.2020.106116
                16ed8cc0-cbc2-4e85-86d5-30fb3e908284
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article