20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-altitude respiration of falconiformes. The primary structures and functional properties of the major and minor hemoglobin components of the adult White-Headed Vulture (Trigonoceps occipitalis, Aegypiinae).

      Biological chemistry Hoppe-Seyler
      Altitude, Amino Acid Sequence, Animals, Birds, blood, Erythrocytes, analysis, metabolism, Globins, Hemoglobins, Hydrogen-Ion Concentration, In Vitro Techniques, Molecular Sequence Data, Oxygen Consumption, Peptide Fragments, Protein Conformation, Trypsin

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary structures of the hemoglobin components Hb A and Hb D of White-Headed Vulture (Trigonoceps occipitalis) are presented. The globin chains were separated on CM-Cellulose in 8M urea buffer, the components by FPLC in phosphate buffers. The amino-acid sequences were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid phase and gas-phase sequenators. The sequences differ from those of European Black Vulture by only one mutation in the alpha A-chains (alpha 137). The alpha D-chains and the beta-chains are identical. This means that for the first time identical minor components in birds have been found. An updated list of identical globin chains is presented. Hb D exhibited a higher oxygen affinity than Hb A. At pH 7.5 and 38 degrees C P50 values of 0.80 and 0.64 kPa (6.0 and 4.8 mm Hg), respectively. Both hemoglobins showed similar Bohr factors displayed a pronounced sensitivity to inositol hexakis(phosphate), which increased P50 values of Hbs A and D to 4.0 and 3.6 kPa (30 and 26 mm Hg), respectively. The molecular and physiological significance of the findings is discussed with special reference to oxygen transport by hemoglobin at high altitude.

          Related collections

          Author and article information

          Comments

          Comment on this article