4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models

      , , , , ,
      Environment International
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015

          Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Role of mineral aerosol as a reactive surface in the global troposphere

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements.

              Size-fractionated samples of airborne particulate matter have been collected in a number of campaigns at Marylebone Road, London and simultaneously at background sites either in Regents Park or at North Kensington. Analysis of these samples has enabled size distributions of total mass and of a number of elements to be determined, and roadside increments attributable to nonexhaust emissions arising from traffic activity have been calculated. Taking a novel approach, the combined use of size distribution information and tracer elements has allowed the separate estimation of the contributions of brake dust, tire dust, and resuspension to particle mass in the range 0.9-11.5 μm aerodynamic diameter and mean contributions (± s.e.) at the Marylebone Road sampling site are estimated as resuspended dust 38.1 ± 9.7%, brake dust 55.3 ± 7.0%, and tire dust 10.7 ± 2.3%, (accounting for a total of 104.1% of coarse particle mass in the traffic increment above background).
                Bookmark

                Author and article information

                Journal
                Environment International
                Environment International
                Elsevier BV
                01604120
                May 2022
                May 2022
                : 163
                : 107204
                Article
                10.1016/j.envint.2022.107204
                173dc0fd-bb59-4e7e-8776-4fd57f388612
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article