12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α5β1 integrin induces the expression of noncartilaginous procollagen gene expression in articular chondrocytes cultured in monolayers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Articular chondrocytes undergo an obvious phenotypic change when cultured in monolayers. During this change, or dedifferentiation, the expression of type I and type III procollagen is induced where normal chondrocytes express little type I and type III procollagen. In this study, we attempted to determine the mechanism(s) for the induction of such procollagen expression in dedifferentiating chondrocytes.

          Methods

          All experiments were performed using primary-cultured human articular chondrocytes under approval of institutional review boards. Integrin(s) responsible for the induction of type I and type III procollagen expression were specified by RNAi experiments. The signal pathway(s) involved in the induction were determined by specific inhibitors and RNAi experiments. Adenovirus-mediated experiments were performed to identify a small GTPase regulating the activity of integrins in dedifferentiating chondrocytes. The effect of inhibition of integrins on dedifferentiation was investigated by experiments using echistatin, a potent disintegrin. The effect of echistatin was investigated first with monolayer-cultured chondrocytes, and then with pellet-cultured chondrocytes.

          Results

          In dedifferentiating chondrocytes, α5β1 integrin was found to be involved in the induction of type I and type III procollagen expression. The induction was known to be mediated by v-akt murine thymoma viral oncogene homolog (AKT) signaling. Among the three AKT isoforms, AKT1 seemed to be most involved in the signaling. Elated RAS viral (r-ras) oncogene homolog (RRAS) was considered to regulate the progression of dedifferentiation by modulating the affinity and avidity of α5β1 integrin to ligands. Echistatin inhibited dedifferentiation of monolayer-cultured chondrocytes. Furthermore, the matrix formed by pellet-cultured chondrocytes more closely resembled that of normal cartilage compared with the controls.

          Conclusions

          The result of this study has shown, for the first time, that α5β1 integrin may be responsible for the induction of non-cartilaginous collagen expression in chondrocytes undergoing dedifferentiation. Again, this study has shown that the inhibition of ligand ligation to integrins may be an effective strategy to inhibit phenotypic change of cultured chondrocytes, and to improve the quality of matrix synthesized by primary cultured chondrocytes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads.

            We have used the three-dimensional culture system in alginate beads to redifferentiate human articular chondrocytes which were first expanded on a plastic support. After 15 days in alginate beads, electron microscopy showed that cells had synthesized an extracellular matrix containing collagen fibrils. Electrophoretic analysis of proline-labeled cells demonstrated that redifferentiated chondrocytes synthesized mainly type II collagen and its precursors (pro alpha 1II, pc alpha 1II, and pn alpha 1II). After pepsin digestion a small amount of collagen type XI was also detected. These results were confirmed by Northern blot analysis of total RNAs. Hybridization with collagen cDNA probes coding for the alpha 1(II) and alpha 1(I) chains of collagen types II and I showed that chondrocytes cultured in alginate expressed mainly alpha 1(II) mRNA, whereas alpha 1(I) mRNA transcripts were almost undetectable. Such a result was observed even after several passages on plastic flasks, suggesting that dedifferentiated cells were able to revert to a chondrocytic phenotype in this three-dimensional system. However, SV40-transformed chondrocytes were not able to redifferentiate in alginate as no alpha 1(II) mRNAs were detected. Total RNA was converted into cDNA by reverse transcription and amplified by polymerase chain reaction. This technique was employed to amplify mRNAs specific for collagen type II and type X and the large aggregating proteoglycan aggrecan. Two transcripts resulting from an alternative splicing of the complement regulatory protein (CRP)-like domain of aggrecan were originally identified in chondrocytes in monolayers. Like intact cartilage, chondrocytes in alginate expressed only the larger transcript with the CRP domain, whereas the two transcripts were equally expressed in SV40-transformed chondrocytes. Thus, the alginate system appears to represent a relevant model for the redifferentiation of human chondrocytes, especially when only a small cartilage biopsy is available, and could prove useful for pulse-chase studies of patients with skeletal chondrodysplasias. However it was unable to restore the chondrocytic phenotype in virally transformed cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis

              Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen–rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that β1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)–Akt–S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of β1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K–Akt–S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect.
                Bookmark

                Author and article information

                Contributors
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2013
                19 September 2013
                : 15
                : 5
                : R127
                Affiliations
                [1 ]Clinical Research Center, National Hospital Organization Sagamihara Hospital, Sakuradai 18-1, Sagamihara, Kanagawa 252-0315, Japan
                [2 ]Department of Human Pathology, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
                [3 ]Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
                [4 ]Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
                Article
                ar4307
                10.1186/ar4307
                3978676
                24286194
                1763dac3-a2db-46f8-afd0-66c1dcffb08b
                Copyright © 2013 Tanaka et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 August 2012
                : 28 August 2013
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article