21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cholangiopathy with Respect to Biliary Innate Immunity

      review-article
      * ,
      International Journal of Hepatology
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biliary innate immunity is involved in the pathogenesis of cholangiopathies in cases of biliary disease. Cholangiocytes possess Toll-like receptors (TLRs) which recognize pathogen-associated molecular patterns (PAMPs) and play a pivotal role in the innate immune response. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA) is not found. Moreover, in primary biliary cirrhosis (PBC) and biliary atresia, biliary innate immunity is closely associated with the dysregulation of the periductal cytokine milieu and the induction of biliary apoptosis and epithelial-mesenchymal transition (EMT), forming in disease-specific cholangiopathy. Biliary innate immunity is associated with the pathogenesis of various cholangiopathies in biliary diseases as well as biliary defense systems.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and pathologies.

          The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults.

            The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells.

              Despite the ability to participate in immune responses and the continuous presence of bacteria and bacterial products, functional responses of intestinal epithelial cells (IEC) seem to be muted. Previously, tolerance to Toll-like receptors (TLRs) ligands has been described in monocytic cells. However, mechanisms in the intestine are unknown. The effect of purified lipopolysaccharide (LPS) and lipoteichoic acid (LTA) on expression and function of TLRs in intestinal epithelial cells (Colo205, SW480, T84) was assessed by Northern and Western blot and FACS analysis, kinase activity assays, immunohistochemistry, and ELISA. Expression of TLRs except 10 was detected in primary IEC and TLR1-10 in the cultured cells. Short-term stimulation with LPS or LTA activated proinflammatory signaling cascades in IEC, including phosphorylation of IRAK and MAP kinases and increased IL-8 secretion, whereas prolonged incubation resulted in a state of hyporesponsiveness with no reactivation of the cells by a second challenge with either substance detected. The cells remained responsive to tumor necrosis factor (TNF). Hyporesponsive cells showed no alteration in expression of TLR or signaling molecules but revealed a decrease in TLR surface expression and IRAK activity. Toll-interacting protein (Tollip) mRNA and protein expression were increased in hyporesponsive cells, and overexpression of Tollip in IEC resulted in a significantly decreased proinflammatory response. Continuous presence of specific bacterial components results in a status of hyporesponsiveness in otherwise reactive IEC. Down-regulation of TLR surface expression and up-regulation of inhibitory Tollip with decreased phosphorylation of IRAK might all contribute to this hyporesponsiveness.
                Bookmark

                Author and article information

                Journal
                Int J Hepatol
                IJHEP
                International Journal of Hepatology
                Hindawi Publishing Corporation
                2090-3448
                2090-3456
                2012
                11 August 2011
                : 2012
                : 793569
                Affiliations
                Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
                Author notes

                Academic Editor: A. J. Demetris

                Article
                10.1155/2012/793569
                3168927
                21994888
                177780b2-858c-4016-96be-300d16cfa15e
                Copyright © 2012 K. Harada and Y. Nakanuma.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2011
                : 23 June 2011
                Categories
                Review Article

                Gastroenterology & Hepatology
                Gastroenterology & Hepatology

                Comments

                Comment on this article