3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advancements with deep generative models have proven significant potential in the task of image synthesis, detection, segmentation, and classification. Segmenting the medical images is considered a primary challenge in the biomedical imaging field. There have been various GANs-based models proposed in the literature to resolve medical segmentation challenges. Our research outcome has identified 151 papers; after the twofold screening, 138 papers are selected for the final survey. A comprehensive survey is conducted on GANs network application to medical image segmentation, primarily focused on various GANs-based models, performance metrics, loss function, datasets, augmentation methods, paper implementation, and source codes. Secondly, this paper provides a detailed overview of GANs network application in different human diseases segmentation. We conclude our research with critical discussion, limitations of GANs, and suggestions for future directions. We hope this survey is beneficial and increases awareness of GANs network implementations for biomedical image segmentation tasks.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2019

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A survey on deep learning in medical image analysis

              Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
                Bookmark

                Author and article information

                Contributors
                ahmedeqbal@gmail.com
                muhammadsharifmalik@yahoo.com
                mussaratabdullah@gmail.com
                mudassarkazmi@yahoo.com
                shabib.aftab@gmail.com
                Journal
                Int J Multimed Inf Retr
                Int J Multimed Inf Retr
                International Journal of Multimedia Information Retrieval
                Springer London (London )
                2192-6611
                2192-662X
                8 July 2022
                : 1-36
                Affiliations
                [1 ]GRID grid.418920.6, ISNI 0000 0004 0607 0704, Department of Computer Science, , COMSATS University Islamabad, ; Wah Campus, Pakistan
                [2 ]GRID grid.444943.a, ISNI 0000 0004 0609 0887, Department of Computer Science, , Virtual University of Pakistan, ; Lahore, Pakistan
                Author information
                http://orcid.org/0000-0003-4946-4167
                http://orcid.org/0000-0002-1355-2168
                http://orcid.org/0000-0001-8604-276X
                http://orcid.org/0000-0001-9124-9298
                http://orcid.org/0000-0002-7662-1394
                Article
                240
                10.1007/s13735-022-00240-x
                9264294
                18519ad5-347d-4d0a-b0d8-8165c6f05c2a
                © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 24 December 2021
                : 16 March 2022
                : 24 May 2022
                Categories
                Trends and Surveys

                generative adversarial network,gans applications,gans in medical image segmentation

                Comments

                Comment on this article