33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential development of interleukin 2–dependent effector and regulatory T cells in response to endogenous systemic antigen

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transfer of naive antigen-specific CD4 + T cells into lymphopenic mice that express an endogenous antigen as a systemic, secreted protein results in severe autoimmunity resembling graft-versus-host disease. T cells that respond to this endogenous antigen develop into effector cells that cause the disease. Recovery from this disease is associated with the subsequent generation of FoxP3 + CD25 + regulatory cells in the periphery. Both pathogenic effector cells and protective regulatory cells develop from the same antigen-specific T cell population after activation, and their generation may occur in parallel or sequentially. Interleukin (IL)-2 plays a dual role in this systemic T cell reaction. In the absence of IL-2, the acute disease is mild because of reduced T cell effector function, but a chronic and progressive disease develops late and is associated with a failure to generate FoxP3 + regulatory T (T reg) cells in the periphery. Thus, a peripheral T cell reaction to a systemic antigen goes through a phase of effector cell–mediated pathology followed by T reg cell–mediated recovery, and both require the growth factor IL-2.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.

          We describe here the preliminary results of the systemic administration of autologous lymphokine-activated killer (LAK) cells and the recombinant-derived lymphokine interleukin-2 to patients with advanced cancer. This regimen was based on animal models in which the systemic administration of LAK cells plus interleukin-2 mediated the regression of established pulmonary and hepatic metastases from a variety of murine tumors in several strains of mice. We treated 25 patients with metastatic cancer in whom standard therapy had failed. Patients received both 1.8 to 18.4 X 10(10) autologous LAK cells, generated from lymphocytes obtained through multiple leukaphereses, and up to 90 doses of interleukin-2. Objective regression of cancer (more than 50 per cent of volume) was observed in 11 of the 25 patients: complete tumor regression occurred in one patient with metastatic melanoma and has been sustained for up to 10 months after therapy, and partial responses occurred in nine patients with pulmonary or hepatic metastases from melanoma, colon cancer, or renal-cell cancer and in one patient with a primary unresectable lung adenocarcinoma. Severe fluid retention was the major side effect of therapy, although all side effects resolved after interleukin-2 administration was stopped. Further development of this approach and additional patient follow-up are required before conclusions about its therapeutic value can be drawn.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene.

            Mice deficient for interleukin-2 develop normally during the first 3-4 weeks of age. However, later on they become severely compromised, and about 50% of the animals die between 4 and 9 weeks after birth. Of the remaining mice, 100% develop an inflammatory bowel disease with striking clinical and histological similarity to ulcerative colitis in humans. The alterations of the immune system are characterized by a high number of activated T and B cells, elevated immunoglobulin secretion, anti-colon antibodies, and aberrant expression of class II major histocompatibility complex molecules. The data provide evidence for a primary role of the immune system in the etiology of ulcerative colitis and strongly suggest that the disease results from an abnormal immune response to a normal antigenic stimulus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In Vitro Generation of Interleukin 10–producing Regulatory CD4+ T Cells Is Induced by Immunosuppressive Drugs and Inhibited by T Helper Type 1 (Th1)– and Th2-inducing Cytokines

              We show that a combination of the immunosuppressive drugs, vitamin D3 and Dexamethasone, induced human and mouse naive CD4+ T cells to differentiate in vitro into regulatory T cells. In contrast to the previously described in vitro derived CD4+ T cells, these cells produced only interleukin (IL)-10, but no IL-5 and interferon (IFN)-γ, and furthermore retained strong proliferative capacity. The development of these IL-10–producing cells was enhanced by neutralization of the T helper type 1 (Th1)- and Th2–inducing cytokines IL-4, IL-12, and IFN-γ. These immunosuppressive drugs also induced the development of IL-10–producing T cells in the absence of antigen-presenting cells, with IL-10 acting as a positive autocrine factor for these T cells. Furthermore, nuclear factor (NF)-κB and activator protein (AP)-1 activities were inhibited in the IL-10–producing cells described here as well as key transcription factors involved in Th1 and Th2 subset differentiation. The regulatory function of these in vitro generated IL-10–producing T cells was demonstrated by their ability to prevent central nervous system inflammation, when targeted to the site of inflammation, and this function was shown to be IL-10 dependent. Generating homogeneous populations of IL-10–producing T cells in vitro will thus facilitate the use of regulatory T cells in immunotherapy.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 November 2005
                : 202
                : 10
                : 1375-1386
                Affiliations
                [1 ]Department of Pathology, University of California, San Francisco, School of Medicine, San Francisco, CA 94143
                [2 ]Diabetes Center, University of California, San Francisco, School of Medicine, San Francisco, CA 94143
                Author notes

                CORRESPONDENCE Abul K. Abbas: aabbas@ 123456itsa.ucsf.edu

                Article
                20050855
                10.1084/jem.20050855
                2212975
                16287710
                189a40ef-df2d-4001-a3ef-4333cd866b59
                Copyright © 2005, The Rockefeller University Press
                History
                : 29 April 2005
                : 5 October 2005
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article