1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DNA sequence-dependent deformability deduced from protein-DNA crystal complexes

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flexibility of DNA.

            P Hagerman (1988)
            Both microscopic and macroscopic models of DNA flexibility should lead to the same quantitative description of the elastic properties of the DNA helix. This belief is reinforced by the fact that essentially all experimental (solution) studies to date support the macroscopic, elastic model. The performance of microscopic models can therefore be checked by their ability to produce the correct macroscopic quantities (P and C). To most carefully address the influence of such factors as base sequence, DNA damage, and drug or protein interaction on the flexibility of DNA, methods are required that are most sensitive for DNA molecules of less than 500-1000 bp. The use of molecules in this size range will maximize the signal due to the structural alteration as well as facilitate the construction of DNA sequences of any desired arrangement. I have emphasized three such methods and summarized their strengths and weaknesses; however, their concurrent application to the determination of DNA flexibility provides an important check of self-consistency. These studies have indicated that the persistence length of DNA in buffers of moderate salt concentration is 450-500 A. Synthetic DNA is now readily available, and many procedures for the construction and cloning of DNA molecules of defined length and sequence (107-108a) are in common use. The availability of restriction fragments of precisely defined length has transformed the study of the physical (particularly hydrodynamic) properties of such molecules, since the hitherto pervasive problem of length polydispersity has been eliminated. Sheared, sonicated, or otherwise abused calf thymus (or other) DNAs should no longer be considered acceptable materials for physical studies. Many studies of bending and torsional fluctuations in DNA have been excluded from this discussion because the DNA samples used were not precisely defined. The torsional elastic constant of DNA has been fairly well established as approximately 3.0 x 10(-19) erg-cm, mainly through a combination of elegant theoretical and experimental studies of topoisomer distributions in circular DNA molecules. The other general approach to the determination of the torsional elastic constant, luminescence decay, is still burdened by the poor characterization of the DNA used in many of the experimental studies as well as by some continued theoretical uncertainties.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coupling of local folding to site-specific binding of proteins to DNA.

              Thermodynamic studies have demonstrated the central importance of a large negative heat capacity change (delta C degree assoc) in site-specific protein-DNA recognition. Dissection of the large negative delta C degree assoc and the entropy change of protein-ligand and protein-DNA complexation provide a thermodynamic signature identifying processes in which local folding is coupled to binding. Estimates of the number of residues that fold on binding obtained from this analysis agree with structural data. Structural comparisons indicate that these local folding transitions create key parts of the protein-DNA interface. The energetic implications of this "induced fit" model for DNA site recognition are considered.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 15 1998
                September 15 1998
                : 95
                : 19
                : 11163-11168
                Article
                10.1073/pnas.95.19.11163
                9736707
                18ea9de2-d243-45f6-89c3-e7b84ed44568
                © 1998
                History

                Comments

                Comment on this article