Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Quercetin 3- O-β-D-Galactopyranoside on the Adipogenic and Osteoblastogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural products, especially phenols, are promising therapeutic agents with beneficial effects against aging-related complications such as osteoporosis. This study aimed to investigate the effect of quercetin 3- O-β-D-galactopyranoside (Q3G), a glycoside of a common bioactive phytochemical quercetin, on osteogenic and adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of Q3G and the differentiation markers were analyzed to observe the effect. Q3G treatment stimulated the osteoblastogenesis markers: cell proliferation, alkaline phosphatase (ALP) activity and extracellular mineralization. In addition, it upregulated the expression of RUNX2 and osteocalcin protein as osteoblastogenesis regulating transcription factors. Moreover, Q3G treatment increased the activation of osteoblastogenesis-related Wnt and bone morphogenetic protein (BMP) signaling displayed as elevated levels of phosphorylated β-catenin and Smad1/5 in nuclear fractions of osteo-induced hBM-MSCs. The presence of quercetin in adipo-induced hBM-MSC culture inhibited the adipogenic differentiation depicted as suppressed lipid accumulation and expression of adipogenesis markers such as PPARγ, SREBP1c and C/EBPα. In conclusion, Q3G supplementation stimulated osteoblast differentiation and inhibited adipocyte differentiation in hBM-MSCs via Wnt/BMP and PPARγ pathways, respectively. This study provided useful information of the therapeutic potential of Q3G against osteoporosis mediated via regulation of MSC differentiation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Flavonoids: an overview

          Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD. Information on the working mechanisms of flavonoids is still not understood properly. However, it has widely been known for centuries that derivatives of plant origin possess a broad spectrum of biological activity. Current trends of research and development activities on flavonoids relate to isolation, identification, characterisation and functions of flavonoids and finally their applications on health benefits. Molecular docking and knowledge of bioinformatics are also being used to predict potential applications and manufacturing by industry. In the present review, attempts have been made to discuss the current trends of research and development on flavonoids, working mechanisms of flavonoids, flavonoid functions and applications, prediction of flavonoids as potential drugs in preventing chronic diseases and future research directions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid

            Antioxidants are substances that may protect cells from the damage caused by unstable molecules such as free radicals. Flavonoids are phenolic substances widely found in fruits and vegetables. The previous studies showed that the ingestion of flavonoids reduces the risk of cardiovascular diseases, metabolic disorders, and certain types of cancer. These effects are due to the physiological activity of flavonoids in the reduction of oxidative stress, inhibiting low-density lipoproteins oxidation and platelet aggregation, and acting as vasodilators in blood vessels. Free radicals are constantly generated resulting in extensive damage to tissues leading to various disease conditions such as cancer, Alzheimer's, renal diseases, cardiac abnormalities, etc., Medicinal plants with antioxidant properties play a vital functions in exhibiting beneficial effects and employed as an alternative source of medicine to mitigate the disease associated with oxidative stress. Flavonoids have existed over one billion years and possess wide spectrum of biological activities that might be able to influence processes which are dysregulated in a disease. Quercetin, a plant pigment is a potent antioxidant flavonoid and more specifically a flavonol, found mostly in onions, grapes, berries, cherries, broccoli, and citrus fruits. It is a versatile antioxidant known to possess protective abilities against tissue injury induced by various drug toxicities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Counting on natural products for drug design.

              Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                28 October 2020
                November 2020
                : 21
                : 21
                : 8044
                Affiliations
                [1 ]Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; wjdghks0171@ 123456naver.com (J.H.O.); karadenizf@ 123456outlook.com (F.K.)
                [2 ]Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea; ywseo@ 123456kmou.ac.kr
                [3 ]Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
                Author notes
                [* ]Correspondence: cskong@ 123456silla.ac.kr ; Tel.: +82-51-999-5429
                Author information
                https://orcid.org/0000-0002-2304-9304
                Article
                ijms-21-08044
                10.3390/ijms21218044
                7663619
                33126698
                18ff22c8-5145-4042-bec9-2a8f4fe02a01
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 September 2020
                : 27 October 2020
                Categories
                Article

                Molecular biology
                adipogenesis,mesenchymal stromal cell,osteoblastogenesis,quercetin,wnt/β-catenin

                Comments

                Comment on this article