11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maintenance of cellular proteostasis is achieved by a multi-layered quality control network, which counteracts the accumulation of misfolded proteins by refolding and degradation pathways. The organized sequestration of misfolded proteins, actively promoted by cellular sequestrases, represents a third strategy of quality control. Here we determine the role of sequestration within the proteostasis network in Saccharomyces cerevisiae and the mechanism by which it occurs. The Hsp42 and Btn2 sequestrases are functionally intertwined with the refolding activity of the Hsp70 system. Sequestration of misfolded proteins by Hsp42 and Btn2 prevents proteostasis collapse and viability loss in cells with limited Hsp70 capacity, likely by shielding Hsp70 from misfolded protein overload. Btn2 has chaperone and sequestrase activity and shares features with small heat shock proteins. During stress recovery Btn2 recruits the Hsp70-Hsp104 disaggregase by directly interacting with the Hsp70 co-chaperone Sis1, thereby shunting sequestered proteins to the refolding pathway.

          Abstract

          The sequestration of misfolded proteins into large assemblies by sequestrases is now considered as the third pillar in protein quality control besides chaperones and proteases. Here the authors characterise the functions of the sequestrases Hsp42 and Btn2 in the proteostasis network of S. cerevisiae and find that they protect cells from too exhaustive depletion of the Hsp70 system.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular strategies for controlling protein aggregation.

            The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

              Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.
                Bookmark

                Author and article information

                Contributors
                bukau@zmbh.uni-heidelberg.de
                a.mogk@zmbh.uni-heidelberg.de
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                24 October 2019
                24 October 2019
                2019
                : 10
                : 4851
                Affiliations
                [1 ]ISNI 0000 0001 2190 4373, GRID grid.7700.0, Center for Molecular Biology of Heidelberg University (ZMBH), ; Im Neuenheimer Feld 282, DKFZ-ZMBH Alliance, Heidelberg, Germany
                [2 ]ISNI 0000 0004 0492 0584, GRID grid.7497.d, German Cancer Research Center (DKFZ), ; 69120 Heidelberg, Germany
                [3 ]ISNI 0000 0004 0555 4846, GRID grid.418800.5, Present Address: Institute of Microbiology of the Czech Academy of Sciences, ; Prague, Czech Republic
                Author information
                http://orcid.org/0000-0002-6996-1323
                http://orcid.org/0000-0002-3982-9962
                http://orcid.org/0000-0002-6703-6169
                http://orcid.org/0000-0003-0521-7199
                Article
                12868
                10.1038/s41467-019-12868-1
                6813348
                31649258
                1917215d-bc05-4dd3-abcd-388b73b0dcc1
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 December 2018
                : 7 October 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft (German Research Foundation);
                Award ID: SFB1036 - TP08
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                biochemistry,chaperones,protein aggregation
                Uncategorized
                biochemistry, chaperones, protein aggregation

                Comments

                Comment on this article