9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.

          Related collections

          Most cited references214

          • Record: found
          • Abstract: found
          • Article: not found

          Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies.

          Lewy bodies (LBs) are hallmark lesions of degenerating neurons in the brains of patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recently, a point mutation in the gene encoding the presynaptic alpha-synuclein protein was identified in some autosomal-dominantly inherited familial PD pedigrees, and light microscopic studies demonstrated alpha-synuclein immunoreactivity in LBs of sporadic PD and DLB. To characterize alpha-synuclein in LBs, we raised monoclonal antibodies (MAbs) to LBs purified from DLB brains and obtained a MAb specific for alpha-synuclein that intensely labeled LBs. Light and electron microscopic immunocytochemical studies performed with this MAb as well as other antibodies to alpha-and beta-synuclein showed that alpha-synuclein, but not beta-synuclein, is a component of LBs in sporadic PD and DLB. Western blot analyses of highly purified LBs from DLB brains showed that full-length as well as partially truncated and insoluble aggregates of alpha-synuclein are deposited in LBs. Thus, these data strongly implicate alpha-synuclein in the formation of LBs and the selective degeneration of neurons in sporadic PD and DLB.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity.

            Non-amyloid, ubiquitinated cytoplasmic inclusions containing TDP-43 and its C-terminal fragments are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder, and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Importantly, TDP-43 mutations are linked to sporadic and non-SOD1 familial ALS. However, TDP-43 is not the only protein in disease-associated inclusions, and whether TDP-43 misfolds or is merely sequestered by other aggregated components is unclear. Here, we report that, in the absence of other components, TDP-43 spontaneously forms aggregates bearing remarkable ultrastructural similarities to TDP-43 deposits in degenerating neurons of ALS and FTLD-U patients [corrected] . The C-terminal domain of TDP-43 is critical for spontaneous aggregation. Several ALS-linked TDP-43 mutations within this domain (Q331K, M337V, Q343R, N345K, R361S, and N390D) increase the number of TDP-43 aggregates and promote toxicity in vivo. Importantly, mutations that promote toxicity in vivo accelerate aggregation of pure TDP-43 in vitro. Thus, TDP-43 is intrinsically aggregation-prone, and its propensity for toxic misfolding trajectories is accentuated by specific ALS-linked mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1.

              Analysis of transgenic mice expressing familial amyotrophic lateral sclerosis (ALS)-linked mutations in the enzyme superoxide dismutase (SOD1) have shown that motor neuron death arises from a mutant-mediated toxic property or properties. In testing the disease mechanism, both elimination and elevation of wild-type SOD1 were found to have no effect on mutant-mediated disease, which demonstrates that the use of SOD mimetics is unlikely to be an effective therapy and raises the question of whether toxicity arises from superoxide-mediated oxidative stress. Aggregates containing SOD1 were common to disease caused by different mutants, implying that coaggregation of an unidentified essential component or components or aberrant catalysis by misfolded mutants underlies a portion of mutant-mediated toxicity.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                22 August 2019
                September 2019
                : 8
                : 9
                : 333
                Affiliations
                [1 ]Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Health, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
                [2 ]Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
                [3 ]Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA
                Author notes
                Article
                antioxidants-08-00333
                10.3390/antiox8090333
                6770078
                31443476
                19a97742-dd27-4de2-a6e6-019255353a93
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 July 2019
                : 19 August 2019
                Categories
                Review

                anthocyanins,phenolic acids,flavonoids,neurodegeneration,alzheimer’s disease,parkinson’s disease,amyotrophic lateral sclerosis,oxidative stress,inflammation,neuroprotection

                Comments

                Comment on this article