1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Articular cartilage, composed of collagen type II as a major extracellular matrix and chondrocyte as a unique cell type, is a specialized connective tissue without blood vessels, lymphatic vessels and nerves. This distinctive characteristic of articular cartilage determines its very limited ability to repair when damaged. It is well known that physical microenvironmental signals regulate many cell behaviors such as cell morphology, adhesion, proliferation and cell communication even determine chondrocyte fate. Interestingly, with increasing age or progression of joint diseases such as osteoarthritis (OA), the major collagen fibrils in the extracellular matrix of articular cartilage become larger in diameter, leading to stiffening of articular tissue and reducing its resistance to external tension, which in turn aggravates joint damage or progression of joint diseases. Therefore, designing a physical microenvironment closer to the real tissue and thus obtaining data closer to the real cellular behaviour, and then revealing the biological mechanisms of chondrocytes in pathological states is of crucial importance for the treatment of OA disease. Here we fabricated micropillar substrates with the same topology but different stiffnesses to mimic the matrix stiffening that occurs in the transition from normal to diseased cartilage. It was first found that chondrocytes responded to stiffened micropillar substrates by showing a larger cell spreading area, a stronger enhancement of cytoskeleton rearrangement and more stability of focal adhesion plaques. The activation of Erk/MAPK signalling in chondrocytes was detected in response to the stiffened micropillar substrate. Interestingly, a larger nuclear spreading area of chondrocytes at the interface layer between the cells and top surfaces of micropillars was observed in response to the stiffened micropillar substrate. Finally, it was found that the stiffened micropillar substrate promoted chondrocyte hypertrophy. Taken together, these results revealed the cell responses of chondrocytes in terms of cell morphology, cytoskeleton, focal adhesion, nuclei and cell hypertrophy, and may be beneficial for understanding the cellular functional changes affected by the matrix stiffening that occurs during the transition from a normal state to a state of osteoarthritis.

          Graphical abstract

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Role of YAP/TAZ in mechanotransduction.

          Cells perceive their microenvironment not only through soluble signals but also through physical and mechanical cues, such as extracellular matrix (ECM) stiffness or confined adhesiveness. By mechanotransduction systems, cells translate these stimuli into biochemical signals controlling multiple aspects of cell behaviour, including growth, differentiation and cancer malignant progression, but how rigidity mechanosensing is ultimately linked to activity of nuclear transcription factors remains poorly understood. Here we report the identification of the Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1) as nuclear relays of mechanical signals exerted by ECM rigidity and cell shape. This regulation requires Rho GTPase activity and tension of the actomyosin cytoskeleton, but is independent of the Hippo/LATS cascade. Crucially, YAP/TAZ are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry; conversely, expression of activated YAP overrules physical constraints in dictating cell behaviour. These findings identify YAP/TAZ as sensors and mediators of mechanical cues instructed by the cellular microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical forces direct stem cell behaviour in development and regeneration

            Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanotransduction and extracellular matrix homeostasis.

              Soft connective tissues at steady state are dynamic; resident cells continually read environmental cues and respond to them to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix (ECM) that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the ECM by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechanoregulation process, which includes the deposition, rearrangement or removal of the ECM to maintain overall form and function. Progress towards understanding the molecular, cellular and tissue-level effects that promote mechanical homeostasis has helped to identify key questions for future research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mater Today Bio
                Mater Today Bio
                Materials Today Bio
                Elsevier
                2590-0064
                27 May 2023
                June 2023
                27 May 2023
                : 20
                : 100682
                Affiliations
                [a ]State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
                [b ]State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
                [c ]National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
                [d ]Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
                Author notes
                []Corresponding author. Bone and joint research laboratory, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610064, China. xiejing2012@ 123456scu.edu.cn
                [1]

                These authors contribute equally to the work.

                Article
                S2590-0064(23)00142-4 100682
                10.1016/j.mtbio.2023.100682
                10251154
                37304578
                1a4cef27-18d1-477c-b5d4-43237b3a5612
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 February 2023
                : 4 May 2023
                : 23 May 2023
                Categories
                Full Length Article

                micropillar substrate,ecm stiffness,chondrocyte hypertrophy,mechanoreception,mechanotransduction

                Comments

                Comment on this article